Effect of the Addition of Glassy Carbon on the Structure and Properties of ZrO2-Y2O2 Coatings

Article Preview

Abstract:

The effect of the addition of glassy carbon on the structure and properties of ZrO2-Y2O2 coatings deposited at the graphite substrate has been investigated. The coatings were deposited by plasma spraying method in an industrial company Plasma System SA Silesian Siemianowice using MIM40 equipment. The microstructure of coatings was investigated by light microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Abrasion was carried out with the use of tribological tester Ducom by pin-on-disc method. The results of investigations showed that the addition of the glassy carbon into coatings materials has increased microhardness and resistance against the wear.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-188

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Książek, I. Nejman, R. Grzelka, P. Pałka, The influence of thermal sprayed coats chemical composition on the microstructure and properties. Material Science Forum (2011) 113-120.

DOI: 10.4028/www.scientific.net/msf.674.113

Google Scholar

[2] G. Barbezat, Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry. Surface and Coatings Technology 200 (200) 1990-(1993).

DOI: 10.1016/j.surfcoat.2005.08.017

Google Scholar

[3] P. Fauchas, G. Montavon, M. Vardelle, J. Cedelle, Developments in direct current plasma spraying. Surface and Coatings Technology 201 (2006) 1908-(1921).

DOI: 10.1016/j.surfcoat.2006.04.033

Google Scholar

[4] N. Espallargs, J. Berget, J. M. Guilemany, A. V. Benedetti, P. H. Suegama, Cr3C2 – NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion – corrosion resistance. Surface and Coatings Technology 202 (2008) 1405-1417.

DOI: 10.1016/j.surfcoat.2007.06.048

Google Scholar

[5] S. Matthews, B. James, M. Hyland, Erosion of oxide scale formed an Cr3C2 - NiCr thermal spray coatings. Corrosion Science 50 (2008) 3087- 3094.

DOI: 10.1016/j.corsci.2008.08.032

Google Scholar

[6] C. A. da Cunha, N. B. de Lima, J. R. Martinelli, A. H. de Almeida Bressiani, A. G. F. Padial, L. V. Ramanatha,. Microstructure and mechanical properties of thermal Spray Nanostructured Cr3C2 - Ni20Cr Coatings. Materials Research 11 (2008).

DOI: 10.1590/s1516-14392008000200005

Google Scholar

[7] J. He, M. Ice, J. M. Schoenung, D. H. Shin, E. J. Lavernia, Thermal Stability of Nanostructured Cr3C2 - NiCr Coatings. JTTEE 10 (2000) 293-300.

DOI: 10.1361/105996301770349385

Google Scholar

[8] M. Richert, The wear resistance of thermal spray the tungsten and chromium carbides coatings, Journal of Achievements in Materials and Manufacturing Engineering. 47 (2011) 177-183.

Google Scholar

[9] P. Fauchais, Understanding plasma spraying. Journal of Physics 37 (2004) 86-108.

Google Scholar

[10] M. Richert, I. Nejman, M. Poręba, J. Sieniawski, Ł. Kuczek, Effect of plasma gases on the structure and properties of WC-CrC-Ni coatings, Key Engineering Materials 641 (2015) 105-110.

DOI: 10.4028/www.scientific.net/kem.641.105

Google Scholar

[11] J. Mostaghimi, S. Chandra, Splat formation in plasma-spray coating process, Pure Appl. Chem. 74 (2004) 441 - 445.

DOI: 10.1351/pac200274030441

Google Scholar

[12] O. Sarikaya, Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process. Surface and Coatings Technology 190 (2005) 388-393.

DOI: 10.1016/j.surfcoat.2004.02.007

Google Scholar

[13] I. Nejman, M. Richert, S. Pietrzyk, P. Pałka, The analysis of mictrostructure and properties Al2O3, ZrO2-Y2O3 coats produced by thermal spraying method at graphite substrate. Rudy i Metale Nieżelazne.

Google Scholar

[14] You Wang, Stephen Jiang, Meidong Wang, Shihe Wang, T. Danny Xiao, Peter R Strutt, Abrasive wear characteristics of plasma sprayed nanostructure alumina/titania coatings. Wear 237 (2000) 176-185 6 (2014) 273-278.

DOI: 10.1016/s0043-1648(99)00323-3

Google Scholar

[15] M. Richert, M. Książek, B. Leszczyńska – Madej, I. Nejman, R. Grzelka, P. Pałka, The Cr3C2 thermal spray coating on Al-Si substrate, Journal of Achievements in Materials and Manufacturing Engineering. 38 (2010) 95-102.

Google Scholar

[16] P. Sokołowski, L. Łatka, A. Ambroziak, The characterization of microstructure and selected properties of zirconia coatings obtained by suspension plasma spraying method. Overview of Welding (2014) 6, 48-54.

DOI: 10.26628/ps.v86i6.71

Google Scholar

[17] Q. Yu, Ch. Zhou, H. Zhang, Thermal stability on nanostructured 13 wt% Al2O3 – 8wt% Y2O3 – ZrO2 thermal barrier coatings. Journal of the European ceramic Society 30 (2010) 889-897.

DOI: 10.1016/j.jeurceramsoc.2009.10.005

Google Scholar

[18] S. Nath, I. Manna, J. Majumdar, Nanomechanical behaviour of yttria stabilized zirconia (YSZ) based thermal barrier coating. Ceramics International (2015) 41 5247-5256.

DOI: 10.1016/j.ceramint.2014.11.039

Google Scholar

[19] J. Myalski, Aluminium matrix composite with low value of coefficient of friction. Composites 2 (2003) 4, 191-194.

Google Scholar

[20] H. Tomaszewski, Viteous carbon - a new form of carbon for industrial applications. Electronicmaterials 21 (1978) 1, 27-39.

Google Scholar

[21] J. Myalski, Influence of glass carbon addition on tribological properties of metal matrix composite materials. Composites 3 (2003) 8, 317-321.

Google Scholar

[22] J. Myalski, J. Wieczorek, A. Dolata-Grosz, J. Śleziona, Tribological properties of heterophase composites with ceramic and amorphous carbon particles compositions. Composites 5 (2005) 2, 11-16.

Google Scholar