Microstructure and Creep Properties of Selected Gravity Casting Magnesium Alloys

Article Preview

Abstract:

In this paper microstructure and creep properties of Mg-Al-Ca-Sr, Mg-Zn-RE-Zr and Mg-Sn-Si gravity casting magnesium alloys are presented. The microstructure was characterized using light microscopy, scanning and transmission electron microscopy. Phase identification was made by SAED and XRD analysis. Creep tests were carried out in the temperature range from 180°C to 200°C at applied stress of 60 MPa. Microstructure of Mg-Al-Ca-Sr alloys composed of α-Mg grains and C36, C15 and C14 intermetallic compounds in the interdendritic regions. In case of Mg-Zn-RE-Zr alloys the dominant intermetallic compound is (Mg,Zn)12RE phase also located in the interdendritic regions. Microstructure of Mg-Sn-Si alloys after T6 heat treatment consists of plate-like precipitates of Mg2Sn phase, primary crystals of Mg2Si phase and globular Mg2Si phase. Among the alloys in this study, the low-cost Mg-5Al-3Ca-0.7Sr alloy has the best creep resistance. The other alloys, excluding the Mg-5Si-7Sn alloy, are characterized by a poorer creep resistance in compared to Mg-5Al-3Ca-0.7Sr alloy, however their creep resistance is better if compared to typical Mg-Al alloys. Creep resistance of Mg-5Si-7Sn alloy is very low.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-379

Citation:

Online since:

February 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Bai, Y. Sun, S. Xun, F. Xue, T. Zhu, Microstructure and tensile creep behavior of Mg–4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions. Mater. Sci. Eng. A419 (2006) 181–188.

DOI: 10.1016/j.msea.2005.12.017

Google Scholar

[2] E. Aghion, B. Bronfin, F. Von Buch, H. Friedrich, S. Schumann, Newly Developed Magnesium Alloys for Powertrain Applications, JOM 55(11) (2003) 30-33.

DOI: 10.1007/s11837-003-0206-8

Google Scholar

[3] K. U. Kainer, Magnesium - Alloys and Technologies, Wiley-VCH, (2003).

Google Scholar

[4] A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Reviews 49(1) (2003)13-30.

Google Scholar

[5] H. Friedrich, B.L. Mordike, Magnesium Technology, Metallurgy, Design Data, Applications, Springer-Verlag Berlin Heidelberg (2006).

Google Scholar

[6] T. Rzychoń., B. Adamczk-Cieślak, A. Kiełbus, J. Mizera, The influence of hot-chamber die casting parameters on the microstructure and mechanical properties of magnesium-aluminum alloys containing alkaline elements, Materialwiss. Werkstofftech. 43(5) (2012).

DOI: 10.1002/mawe.201200976

Google Scholar

[7] T. Rzychoń, J. Szala, T. Kukiełka, Detection of intermetallic compounds in a Mg-5Al-3Ca-0. 7Sr-0. 2Mn magnesium alloy, Solid State Phenom. 197 (2013) 137-142.

DOI: 10.4028/www.scientific.net/ssp.197.137

Google Scholar

[8] T. Rzychoń, A. Kiełbus, L. Lityńska-Dobrzyńska, Microstructure, microstructural stability and mechanical properties of sand-cast Mg-4Al-4RE alloy, Mater. Charact. 83 (2013) 21-34.

DOI: 10.1016/j.matchar.2013.06.001

Google Scholar

[9] T. Rzychoń, A. Kiełbus, Microstructure and tensile properties of sand cast and die cast AE44 Magnesium Alloy, Arch. Metall. Mater. 53 (2008) 901-907.

Google Scholar

[10] M. Gupta, N.M.L. Sharon, Magnesium, magnesium alloys and magnesium composites, John Wiley & Sons, Inc., Hoboken, New Jersey, (2011).

Google Scholar

[11] A. Kiełbus, T. Rzychoń, L. Lityńska-Dobrzyńska, G. Dercz, Characterization of β and Mg41Nd5 equilibrium phases in Elektron 21 magnesium alloy after long-term annealing, Solid State Phenom. 163 (2010) 106-109.

DOI: 10.4028/www.scientific.net/ssp.163.106

Google Scholar

[12] T. Rzychoń, A. Kiełbus, M. Serba, The influence of pouring temperature on the microstructure and fluidity of Elektron 21 and WE54 magnesium alloys, Arch. Metall. Mater. 55 (2010) 7-13.

Google Scholar

[13] B. Dybowski, A. Kiełbus, R. Jarosz, Effect of mould components on the cooling rate, microstructure, and quality of WE43 magnesium casting alloy, Arch. Metall. Mater. 29 (2014) 1527-15322.

DOI: 10.2478/amm-2014-0258

Google Scholar

[14] A. Kiełbus, T. Rzychoń, The intermetallic phases in sand casting magnesium alloys for elevated temperature, Mater. Sci. Forum 690 (2011) 214-217.

DOI: 10.4028/www.scientific.net/msf.690.214

Google Scholar

[15] www. magnesium-elektron. com (DS455. pdf).

Google Scholar

[16] M. Podosek, G.W. Lorimer, The influence of intergranular microstructure of Mg-Zn-RE alloys on properties at elevated temperatures, Arch. Metall. 45(1) (2000) 47-55.

Google Scholar

[17] I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Microstructural stability and creep pf rare-earth containing magnesium alloys, Scripta Mater. 48 (2003) 1029-1034.

DOI: 10.1016/s1359-6462(02)00595-x

Google Scholar

[18] T. Rzychoń, Microstructure of MgAl5Ca3Sr alloy after creep deformation and high-temperature heat treatment, Materialwiss. Werkstofftech. 5 (2014) 1-10.

DOI: 10.1002/mawe.201400233

Google Scholar

[19] A. Suzuki, N.D. Saddock, L. Riester, E. Lara-Curzio, J.W. Jones, T.M. Pollock, Effect of Sr additions on the microstructure and strength of a Mg-Al-Ca ternary alloy, Metallurgical and Materials Transactions A 38A (2007) 420-427.

DOI: 10.1007/s11661-006-9031-3

Google Scholar

[20] S Roskosz, B Dybowski, R Jarosz, Influence of mould cooling rate on the microstructure of AZ91 magnesium alloy castings, State Phenom. 191 (2012) 115-122.

DOI: 10.4028/www.scientific.net/ssp.191.115

Google Scholar

[21] S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, E.H. Han, Thermal analysis and solidification pathways of Mg-Al-Ca system alloys, Mater. Sci. Eng. 480 (2008) 365-372.

DOI: 10.1016/j.msea.2007.07.025

Google Scholar

[22] N. Zheng, H.Y. Wang, Z.H. Gu, W. Wang, Q.C. Jiang, Development of an effective modifier for hypereutectic Mg–Si alloys, J. Alloys Compd. 463 (2008) L1-L4.

DOI: 10.1016/j.jallcom.2007.08.082

Google Scholar

[23] F. Mirshahi, M. Meratian, High temperature tensile properties of modified Mg/Mg2Si in situ composite, Mater. Des. 33 (2012) 557–562.

DOI: 10.1016/j.matdes.2011.05.001

Google Scholar

[24] T. Rzychoń, J. Szala, A. Kiełbus, Microstructure, castability, microstructural stability and mechanical properties of ZRE1 magnesium alloy, Arch. Metall. Mater. 57 (2012) 254-252.

DOI: 10.2478/v10172-012-0018-3

Google Scholar

[25] T. Rzychoń, Characterization of Mg-rich clusters in the C36 phase of the Mg-5Al-3Ca-0. 7Sr-0. 2Mn alloy, J. Alloys Compd. 598 (2014) 95-105.

DOI: 10.1016/j.jallcom.2014.02.029

Google Scholar

[26] T. Rzychoń, B. Adamczyk-Cieślak, Microstructure and creep resistance of Mg-Al-Ca-Sr alloys, Arch. Metall. Mater. 59 (2014) 327-332.

DOI: 10.2478/amm-2014-0054

Google Scholar

[27] T. Rzychoń, Microstructure of hypereutectic Mg-Si alloy with Sn, Al and Mn additions, Solid State Phenom. 229 (2015) 65-70.

DOI: 10.4028/www.scientific.net/ssp.229.65

Google Scholar