Generation of Regular Pore System in Silicon by Means of Nanoindentation

Article Preview

Abstract:

Regular pore system (RPS) was generated in monocrystalline silicon by means of electrochemical anodization of the surface after forming “matrices” of indenter imprints. The morphology of the obtained RPSs was examined using scanning electron microscopy. It was shown that decrease in the distance between the indentations (indentation depth h = 140 nm) allows to obtain RPSs with crosswise pore sizes d < 300 nm, which is unattainable by photolithography technique. The data indicate that nanoimprint method can be employed to create regular systems of micro-and nanopores in silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-135

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu.P. Piryatinski, L.O. Dolgov, O.V. Yaroshchuk, S. Lazarouk, Fluorescence of porous silicon filled with liquid crystal 5CB, Mol. Cryst. Liq. Cryst. 467 (2007) 195-202.

DOI: 10.1080/15421400701221476

Google Scholar

[2] U. Griming, V. Lehmann, S. Ottow, K. Busch, Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 um, Appl. Phys. Lett. 68, 6 (1996) 747-749.

DOI: 10.1063/1.116729

Google Scholar

[3] H. Saha, C. Pramanik, Porous silicon-based sensors: prospects and challenges, Materials and Manufacturing Processes 21 (2006) 239-246.

DOI: 10.1080/10426910500464461

Google Scholar

[4] V.V. Bolotov, P.M. Korusenko, S.N. Nesov, S.N. Povoroznyuk, V.E. Roslikov, E.A. Kurdyukova, Yu.A. Sten'kin, R.V. Shelyagin, E.V. Knyazev, V.E. Kan, I.V. Ponomaryeva, Fabrication of por-Si/SnOx nanocomposite layers for gas microsensors and nanosensors, Semiconductors 45, 5 (2011).

DOI: 10.1134/s1063782611050071

Google Scholar

[5] L.S. Monastyrskyi, O.I. Aksimentyeva, M.R. Pavlyk, V.P. Savchyn, L.I. Yaryc'ka, Organic-inorganic nanosystem based on fullerene embedded in porous silicon matrix, Mol. Cryst. Liq. Cryst. 536 (2011) 58-64.

DOI: 10.1080/15421406.2011.538338

Google Scholar

[6] H. Foll, M. Leisner, A. Cojocaru, J. Carstensen, Macroporous semiconductors, Mater. 3 (2010) 3006-3076.

DOI: 10.3390/ma3053006

Google Scholar

[7] V. Lehmann, Porous silicon matrix for chemical synthesis and chromatograpy, Phys. Stat. Sol. (A), 202, 8 (2005) 1365-1368.

DOI: 10.1002/pssa.200461103

Google Scholar

[8] E. Quiroga-Gonzalez, J. Carstensen, C. Glynn, C. O'Dwyer, H. Foll, Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering, Phys. Chemistry Chem. Physics 16, 1 (2014).

DOI: 10.1039/c3cp53600a

Google Scholar

[9] R.B. Wehrspohn, Ordered Porous Nanostructures and Applications. Series: Nanostructure Science and Technology, Springer, New York, (2005).

Google Scholar

[10] V. Torres-Costa, R.J. Martin-Palma, Application of nanostructured porous silicon in the field of optics. A review, J. Mater. Sci. 45 (2010) 2823-2838.

DOI: 10.1007/s10853-010-4251-8

Google Scholar

[11] S.K. Lazaruk, A.V. Dolbik, V.A. Labunov, V.E. Borisenko, Combustion and explosion of nanostructured silicon in microsystem devices, Semiconductors 41, 9 (2007) 1113-1116.

DOI: 10.1134/s1063782607090175

Google Scholar

[12] V. Lehmann, U. Gruing, The limits of macropore array fabrication, Thin Sol. Films 297 (1997) 13-17.

DOI: 10.1016/s0040-6090(96)09478-3

Google Scholar

[13] A.A. Dmitrievskiy, N. Yu. Efremova, A.V. Druzhkin, T.O. Korosteleva, D.G. Guseva, Effect of the duration of electrochemical anodization on the microhardness of macroporous silicon, Semiconductors 48, 9 (2014) 1202–1204.

DOI: 10.1134/s1063782614090061

Google Scholar