Obtaining Heat-Resistant Materials with the Use of Silica Nanoparticles

Article Preview

Abstract:

Heat-resistant materials are commonly used in industry where technological processes require high temperatures. The research represents possibility to obtain Al2O3–SiO2–ZrO2 based composition from local raw like zirconium silicate of Tugansk deposit of Tomsk region and white clay of Kailinsk deposit of Kemerovo region in Russia. There is possible application in gunning-mass form for restoration industrial thermal units. X-ray Diffraction Analysis demonstrates that mullite and zirconium compounds are formed in samples content after firing. The infra-red spectrums of heat-resistant gunning masses samples have been described by Fourier Transform Infrared Spectroscopy method. The thermal analysis has been performed using Differential Scanning Calorimetry and Derivative Thermogravimetry.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] W. Kingery, Factors Affecting Thermal Stress Resistance of Ceramic Materials, J. Am. Ceram. Soc. 38 (1) (1955) 3–15.

Google Scholar

[2] D. Parkinson, Feeder and forehearth refractories, Gl. Tech. 29 (1988) 73–176.

Google Scholar

[3] E. Thomas, Weichert T., Trends in usage in glass industry, Proc. UNITECR (1989) 730–760.

Google Scholar

[4] D. Jarvis, An overview of the current 2013 global refractories industry, Intercam 62 (4) (2013) 262-266.

Google Scholar

[5] Lee W., Moore R., Evolution of in situ refractories in the 20th century. J. Am. Ceram. Soc. 81 (6) (1998) 1385-1410.

Google Scholar

[6] K. Dana, S. Sinhamahapatra, H. Tripathi, A. Ghosh, Refractories of Alumina-Silica System, T. Ind. Ceram. Soc. 73 (1) (2014) 1-13.

Google Scholar

[7] O. Bories, I. Cabodi, Gaubil M., B. Malphettes, New Fused Cast Refractory for Metal Line Protection, Ceram. Eng. and Sc. Proc. 35 (1) (2014) 197-202.

DOI: 10.1002/9781118932964.ch19

Google Scholar

[8] D. Larson, J. Coppola, D. Hasselman, Fracture toughness and spalling behavior of high-Al2O3 refractories, J. Am. Ceram. Soc. 57 (10) (1974) 417-421.

DOI: 10.1111/j.1151-2916.1974.tb11372.x

Google Scholar

[9] B. Ghosh, R. Sinha, A. Chattopadhyay, Aluminosilicate Refractories for Special Applications in Non-Ferrous Metallurgy: Processing and Microstructure, Proc. UNITECR (2005) 652-657.

Google Scholar

[10] A. Buhr, Trends in High Alumina Refractory Developments for Innovative Solutions, Proc. IREFCON (2014) 83-87.

Google Scholar

[11] A. Guzman, D. Martinez, R. Gonzalez, Corrosion-erosion wear of refractory bricks in glass furnaces, Eng. Fail. Anal. 46 (2014) 188-195.

DOI: 10.1016/j.engfailanal.2014.09.003

Google Scholar

[12] T. Mori, Y. Yamada, H. Yamamura, H. Kobayashi, T. Mitamura, Synthesis and Mechanical Properties of Alumina-MgO Stabilized Zirconia-Zircon Composite, J. Ceram. Soc. Jpn. 100 (3) (1992) 250–258.

DOI: 10.2109/jcersj.101.309

Google Scholar

[13] L. Manfredo, R. McNally, The corrosion resistance of high ZrO2 fusion-cast Al2O3-ZrO2-SiO2 glass refractories in soda lime glass. J. Mater. Sci. 19 (4) (1984) 1272-1276.

DOI: 10.1007/bf01120038

Google Scholar

[14] D. Yang, M. Ma, R. Liu, Y. Chu, Y. Yin, L. Li, G. Wan, Riser design of cast system of fused Zirconia-Alumina-Silica, Key Eng. Mat. 633 (2014) 498-502.

DOI: 10.4028/www.scientific.net/kem.633.498

Google Scholar

[15] K. Beimdiek, H. Klischat, Dry and wet gunning - technico-economic refractory concrete concepts for highly loaded cement plants, Proc. UNITECR (2014) 167-172.

DOI: 10.1002/9781118837009.ch29

Google Scholar

[16] S. Banerjee, H. Harbin, E. Reno, Spray-gunning refractories, Proc. UNITECR (1997) 553-562.

Google Scholar

[17] Y. Mizuma, H. Tomono, H. Ohata, H. Ebisawa, T. Matsui, H. Otsubo, H. Takeuchi, M. Satou, Development of new dry gunning method, Proc. UNITECR (2011) 57-60.

Google Scholar

[18] B. Myhre, B. Sandberg, The use of microsilica in refractory castables, Proc. of Int. Conf. on Mon. Refr. Mater. (1997) 113–140.

Google Scholar

[19] A. Ruhov, T. Malinovskaya, V. Sachkov, M. Mishchenko, Photoinducedbactericidal activity of titanium dioxide nanoparticles attached to the surface of polypropylene fibers. Adv. Mater. Res. 880 (2015) 229-232.

DOI: 10.4028/www.scientific.net/amr.880.229

Google Scholar

[20] O. Karban, O. Khasanov, Investigation of zirconia nanoceramics microstructure, Phys. of Low-dim. Struct. 3 (2003) 297-308.

Google Scholar

[21] O. Nazarenko, Electroexplosive nanopowders: production, properties, application, TSU Ed., Tomsk, (2005).

Google Scholar

[22] S. Bardakhanov, S. Kravets, V. Lysenko, V. Naumenkov, A. Nomoev, V. Obanin, D. Trufanov, A. Shibaev, Experimental determination of the dependence of starch looseness on the concentration of the silicon dioxide nanopowder (Tarcosil) in it, Russ. J. Non-Fer. Met. 50 (4) (2009).

DOI: 10.3103/s1067821209040142

Google Scholar

[23] T. Malinovskaya, V. Vlasov, G. Volokitin, S. Melentyev, Investigation of Thermostability of a Composite Resistive Material with Nanodimensional Carbon Fillers, Rus. Phys. J. 57 (2) (2015) 245-251.

DOI: 10.1007/s11182-014-0231-9

Google Scholar

[24] P. Kosmachev, Design technology and composition of nano-baddeleyite refractories for glass manufacturing [Razrabotka sostavov i tekhnologii polucheniya nanobaddeleitovykh ogneuporov dlya steklovarennoi promyshlennosti – in Russian], Vestn. TSUAB 6 (2014).

Google Scholar