Phase Transformations of the Ti-40% Nb Alloy Under External Influence

Article Preview

Abstract:

The phase transformations of the alloy Ti-40 mas % Nb after tempering and severe plastic deformation are studied. The phase transformations of the alloy according to the type and conditions of external influences are analyzed using methods of XRD, SEM and optical metallography. It is determined that inverse phase transformation of the metastable α''-phase to equilibrium β-phase is carried out after severe plastic deformation. Complete phase transformation α'' → β is typical for the mode, which consists of three pressing operation with the change of the loading axis in cramped conditions, followed by a multi-pass rolling in grooved rolls.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-180

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Xu, S. Xiao, J. Tian, Y. Chen, Y. Huang, Microstructure and dry wear properties of Ti-Nb alloys for dental protheses, Trans. Nonferrous Met. Soc. China 19 (2009) 639-644.

DOI: 10.1016/s1003-6326(10)60124-0

Google Scholar

[2] M.J. Jackson, W. Ahmed, Surface Engineered Surgical Tools and Medical Devices, Springer, USA (2007).

Google Scholar

[3] Y.H. Hon, J.Y. Wang, Y.N. Pan, Composition/phase structure and properties of titanium-niobium alloys, Mater. Trans. 44, 11 (2003) 2384-2390.

DOI: 10.2320/matertrans.44.2384

Google Scholar

[4] E.W. Collings, The Physical Metallurgy of Titanium alloys, Amer. Soc. Met., Ohio, (1984).

Google Scholar

[5] Zh.G. Kovalevskaya, M.A. Khimich, A.V. Belyakov, I.A. Shulepov, Evaluation of physical and mechanical properties of structural components of Ti-Nb alloy, Adv. Mater. Res. 1040 (2014) 39-42.

DOI: 10.4028/www.scientific.net/amr.1040.39

Google Scholar

[6] R.Z. Valiev, I.V. Alexandrov, Bulk Nanostructured Metal Materials: Production, Structure and Properties, Akademkniga, Moscow, (2007).

Google Scholar

[7] I.V. Shishkovskiy, Laser Synthesis of Functional Mesostructures and Bulk Products, PHISMATHLIT, Moscow, (2009).

Google Scholar

[8] N.B. D'yakonova, I.V. Lyasotskii, Yu.L. Rodionov, Orthorombic martensite and the ω phase in quenched and deformed titanium alloys with 20-24 at % Nb, Rus. Metallurgy (Metally – in Russian) 1 (2007) 51-28.

DOI: 10.1134/s0036029507010107

Google Scholar

[9] W. Elmay, F. Prima, T. Gloriant, B. Bolle, Y. Zhong, E. Patoor, P. Laheurte, Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy, J. of the Mechanical Behavior of Biomed. Mater. 18 (2013).

DOI: 10.1016/j.jmbbm.2012.10.018

Google Scholar

[10] S. Banumathy, R.K. Mandal, A.K. Singh, Texture and anisotropy of a hot rolled Ti-16Nb alloy, J. Alloys and Compounds 500 (2010) 126-130.

DOI: 10.1016/j.jallcom.2010.04.022

Google Scholar

[11] Yu.P. Sharkeev, A. Yu. Eroshenko, I.A. Glukhov, Q. Zhu, A.I. Tolmachev, Microstructure and mechanical properties of Ti alloy with 40 % Nb mass after severe plastic deformation, Phys. Mesomechan. Multilev. Syst. 1623 (2014) 567-570.

DOI: 10.1063/1.4899008

Google Scholar

[12] Yu.P. Sharkeev, A.D. Bratchikov, Yu.R. Kolobov, Nanostructured titanium for biomedical application, Phys. Mesomechan. 7(S2) (2004) 107-110.

Google Scholar

[13] Yu.P. Sharkeev, Zh.G. Kovalevskaya, Q. Zhu, M.A. Khimich, E.A. Parilov, Investigation of the influence of Ti-Nb alloy composition on the structure of the ingots produced by arc melting, Adv. Mater. Res. 1085 (2015) 307-311.

DOI: 10.4028/www.scientific.net/amr.1085.307

Google Scholar

[14] M.G. Golkovsky, T.V. Zhuravina, I.A. Bataev, A.A. Bataev, S.V. Veselov, V.A. Bataev, E. A. Prikhodko, Cladding of tantalum and niobium on titanium by electron beam, injected in atmosphere, Adv. Mater. Res. 314-316 (2011) 23-27.

DOI: 10.4028/www.scientific.net/amr.314-316.23

Google Scholar

[15] J. Penney, W.D. Hoff, W.J. Kitchingman, X-ray diffraction studies of the relationship between defect structure and superconducting properties in niobium-titanium alloys, J. Phys. D: Appl. Phys. 3 125 (1970) 125-132.

DOI: 10.1088/0022-3727/3/2/304

Google Scholar

[16] J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, T. Saito, Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys, J. Mater., Eng. and Perform. 14 (6) (2005) 747-754.

DOI: 10.1361/105994905x75556

Google Scholar

[17] Y. Mantani, M. Tajima, Phase transformation of quenched α' martensite by aging in Ti-Nb alloys, Mater. Sci. Eng. A. 438–440 (2006) 315-319.

DOI: 10.1016/j.msea.2006.02.180

Google Scholar

[18] Н.Y. Kim, Y. Ikehara, J.I. Kim, H. Yosoda, S. Miyazaaki, Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys, Acta Materialia. 54 (2006) 2419-2429.

DOI: 10.1016/j.actamat.2006.01.019

Google Scholar