[1]
L. Xu, S. Xiao, J. Tian, Y. Chen, Y. Huang, Microstructure and dry wear properties of Ti-Nb alloys for dental protheses, Trans. Nonferrous Met. Soc. China 19 (2009) 639-644.
DOI: 10.1016/s1003-6326(10)60124-0
Google Scholar
[2]
M.J. Jackson, W. Ahmed, Surface Engineered Surgical Tools and Medical Devices, Springer, USA (2007).
Google Scholar
[3]
Y.H. Hon, J.Y. Wang, Y.N. Pan, Composition/phase structure and properties of titanium-niobium alloys, Mater. Trans. 44, 11 (2003) 2384-2390.
DOI: 10.2320/matertrans.44.2384
Google Scholar
[4]
E.W. Collings, The Physical Metallurgy of Titanium alloys, Amer. Soc. Met., Ohio, (1984).
Google Scholar
[5]
Zh.G. Kovalevskaya, M.A. Khimich, A.V. Belyakov, I.A. Shulepov, Evaluation of physical and mechanical properties of structural components of Ti-Nb alloy, Adv. Mater. Res. 1040 (2014) 39-42.
DOI: 10.4028/www.scientific.net/amr.1040.39
Google Scholar
[6]
R.Z. Valiev, I.V. Alexandrov, Bulk Nanostructured Metal Materials: Production, Structure and Properties, Akademkniga, Moscow, (2007).
Google Scholar
[7]
I.V. Shishkovskiy, Laser Synthesis of Functional Mesostructures and Bulk Products, PHISMATHLIT, Moscow, (2009).
Google Scholar
[8]
N.B. D'yakonova, I.V. Lyasotskii, Yu.L. Rodionov, Orthorombic martensite and the ω phase in quenched and deformed titanium alloys with 20-24 at % Nb, Rus. Metallurgy (Metally – in Russian) 1 (2007) 51-28.
DOI: 10.1134/s0036029507010107
Google Scholar
[9]
W. Elmay, F. Prima, T. Gloriant, B. Bolle, Y. Zhong, E. Patoor, P. Laheurte, Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy, J. of the Mechanical Behavior of Biomed. Mater. 18 (2013).
DOI: 10.1016/j.jmbbm.2012.10.018
Google Scholar
[10]
S. Banumathy, R.K. Mandal, A.K. Singh, Texture and anisotropy of a hot rolled Ti-16Nb alloy, J. Alloys and Compounds 500 (2010) 126-130.
DOI: 10.1016/j.jallcom.2010.04.022
Google Scholar
[11]
Yu.P. Sharkeev, A. Yu. Eroshenko, I.A. Glukhov, Q. Zhu, A.I. Tolmachev, Microstructure and mechanical properties of Ti alloy with 40 % Nb mass after severe plastic deformation, Phys. Mesomechan. Multilev. Syst. 1623 (2014) 567-570.
DOI: 10.1063/1.4899008
Google Scholar
[12]
Yu.P. Sharkeev, A.D. Bratchikov, Yu.R. Kolobov, Nanostructured titanium for biomedical application, Phys. Mesomechan. 7(S2) (2004) 107-110.
Google Scholar
[13]
Yu.P. Sharkeev, Zh.G. Kovalevskaya, Q. Zhu, M.A. Khimich, E.A. Parilov, Investigation of the influence of Ti-Nb alloy composition on the structure of the ingots produced by arc melting, Adv. Mater. Res. 1085 (2015) 307-311.
DOI: 10.4028/www.scientific.net/amr.1085.307
Google Scholar
[14]
M.G. Golkovsky, T.V. Zhuravina, I.A. Bataev, A.A. Bataev, S.V. Veselov, V.A. Bataev, E. A. Prikhodko, Cladding of tantalum and niobium on titanium by electron beam, injected in atmosphere, Adv. Mater. Res. 314-316 (2011) 23-27.
DOI: 10.4028/www.scientific.net/amr.314-316.23
Google Scholar
[15]
J. Penney, W.D. Hoff, W.J. Kitchingman, X-ray diffraction studies of the relationship between defect structure and superconducting properties in niobium-titanium alloys, J. Phys. D: Appl. Phys. 3 125 (1970) 125-132.
DOI: 10.1088/0022-3727/3/2/304
Google Scholar
[16]
J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, T. Saito, Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys, J. Mater., Eng. and Perform. 14 (6) (2005) 747-754.
DOI: 10.1361/105994905x75556
Google Scholar
[17]
Y. Mantani, M. Tajima, Phase transformation of quenched α' martensite by aging in Ti-Nb alloys, Mater. Sci. Eng. A. 438–440 (2006) 315-319.
DOI: 10.1016/j.msea.2006.02.180
Google Scholar
[18]
Н.Y. Kim, Y. Ikehara, J.I. Kim, H. Yosoda, S. Miyazaaki, Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys, Acta Materialia. 54 (2006) 2419-2429.
DOI: 10.1016/j.actamat.2006.01.019
Google Scholar