Radiation-Chemical Modification of PVDF Films as a Method of Creating Proton-Conducting Membranes

Article Preview

Abstract:

In this work we represent the results for the development of proton conductive membranes by radiochemical modification of thin PVDF films with their subsequent sulfonation. Radiation source were 4He ions with energy of 27 MeV produced by cyclotron R-7M the FTI TPU. The results of IR-spectroscopy, gravimetric analysis and microscopy are represented to evaluate changes in membranes properties. It was shown that the deepness of modificated gel can be controlled by radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. -Y. Sohn., H. -J. Sung, J. -M. Song, J. Shin, Y. -C. Nho, Radiation-grafted protonexchange membranes based onco-grafting from binary monomer mixtures intopoly(ethylene-tetrafluoroetthylen, Radiation Physics and Chem. 81 (2012) 923-926.

DOI: 10.1016/j.radphyschem.2012.02.019

Google Scholar

[2] S.M.J. Zaidi, T. Matsuura, Polymer membranes for fuel cells, Springer Science+Business Media, USA, (2009).

Google Scholar

[3] V. Ya. Kabanov, V.I. Feldman, B.G. Ershov, Radiation chemistry of polymers, High Energy Chem. 43 (1) (2009) 1-8.

Google Scholar

[4] M.M. Nasef, H. Saidi, K.Z.M. Dahlan, Radiation grafted poly(vinylidene fluoride)-graftpolystyrene sulfonic acid membranes for fuel cells: structure-property relationships, Chin. J. Polymer Sci. 28 (5) (2010) 761-770.

DOI: 10.1007/s10118-010-9138-2

Google Scholar

[5] S.W. Lee, Yu. Bondar, D.H. Han, Synthesis of polypropylene fabric with sulfonate groups, Radiation Physics and Chem. 77 (4) (2008) 503-510.

DOI: 10.1016/j.radphyschem.2007.09.012

Google Scholar

[6] L. Yu. Novoselova, E.E. Sirotkina, E.V. Sergeeva, Preparation and study of properties of sulfonic acid ion exchangers based on polypropylene fibrous material, Rus. J. Appl. Chem. 79 (3) (2006) 372-376.

DOI: 10.1134/s1070427206030074

Google Scholar

[7] A. Bhattacharya, B.N. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications, Progress polym sci Vol. 29, No. 8, (2004) 767-814.

DOI: 10.1016/j.progpolymsci.2004.05.002

Google Scholar

[8] L. Yu. Novoselova, E.E. Sirotkina, Polyolefinic fibrous ion-exchange materials: Properties and applications, Chem. Sustainable Develop. 14 (3) (2006) 199-213.

Google Scholar

[9] T.R. Dargaville, G.A. George, D.J.T. Hill, A.K. Whittaker, High energy radiation grafting of fluoropolymers, Progress polym sci 28 (9) (2003) 1355-1376.

DOI: 10.1016/s0079-6700(03)00047-9

Google Scholar

[10] T. Sata, Exchange Membranes: Preparation, Characterization, Modification and Application, Springer, (2004).

Google Scholar

[11] A. Vahdat, H. Bahrami, N. Ansari, F. Ziaie, Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam, Radiation physics chemistry 76 (5) (2007) 787-793.

DOI: 10.1016/j.radphyschem.2006.05.009

Google Scholar

[12] E.A. Cho, U.S. Jeon, H.A. Ha, S.A. Hong, I.H. Oh, Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells, J. Power Sources. 125 (2004) 178-182.

DOI: 10.1016/j.jpowsour.2003.08.039

Google Scholar

[13] S.A. Sherif, F. Barbir, N. Veziroglu, Wind energy and the hydrogen economy – review of the technology, Sol Energy. 78 (2005) 647–60.

DOI: 10.1016/j.solener.2005.01.002

Google Scholar

[14] Y. Woo, S.Y. Oh, Y.S. Kang, B. Jung, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, J. Membrane Sci. 220 (2003) 31-45.

DOI: 10.1016/s0376-7388(03)00185-6

Google Scholar

[15] B. Soresi, E. Quartarone, P. Mustarelli, A. Magistris, G. Chiodelli, PVDF and P(VDF-HFP)-based proton exchange membranes, Solid State Ionics. 166 (2004) 383-389.

DOI: 10.1016/j.ssi.2003.11.027

Google Scholar

[16] C. Schmidt, G. Schmidt-Naake, Proton conducting membranes obtained by doping radiation-grafted basic membrane matrices with phosphoric acid, Macromolecular Mater. Eng. 292 (2007) 1164-1175.

DOI: 10.1002/mame.200700188

Google Scholar

[17] M. M. Nasef, H. Saidi, K.Z.M. Dahlan, Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell, J. Membrane Sci. 339 (2009) 115-119.

DOI: 10.1016/j.memsci.2009.04.037

Google Scholar

[18] V.M. Golovkov, V.V. Sokhoreva, T. I. Sigfusson, Formation of Chemically Resistant Tract Membranes, Petrol. Chem. 52 (7) (2012) 462-464.

DOI: 10.1134/s0965544112070055

Google Scholar

[19] V.V. Sokhoreva, V.M. Golovkov, N.A. Dubrova, D.F. Sidko, Laws of Radiation Grafting of Styrene to PVDF Films and Characterization of the Grafted Polymer, Adv. Mater. Res. 1084 (2015) 42-45.

DOI: 10.4028/www.scientific.net/amr.1084.42

Google Scholar

[20] V.M. Golovkov, V. V. Sokhoreva, Yu.I. Tyurin, T.I. Sigfusson, Polutschenije of a polymeric electrolytic membrane for a combustion cell a method of radiation-chemical processing of a film of PVDF, Higher Education Institutions. Physics 54 (11/3) (2013).

Google Scholar