Virtual Material Model with the Given Crystallographic Orientation of the Structure

Article Preview

Abstract:

The article represents the theoretical basis for the generation of virtual material models with the given crystallographic orientation (CGO) of the structure in metals and alloys with the cubic crystal lattice. The obtained functional interrelations allow to take into consideration a metal sheet CGO in technological calculations of metal forming processes and, most significantly, a priori by means of calculations to determine the structure CGO meeting the requirements of increasing the materials formability and the product performance. It is given an example of the implementation of the calculated CGO of the structure while rolling can sheet from aluminum alloy 3104.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-142

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Engler, V. Randle, Introduction to texture analysis: macrotexture, microtexture and orientation mapping, CRC Press, New York, (2010).

DOI: 10.1201/9781482287479

Google Scholar

[2] D. Banabic, H. -J. Bunge, K. Pohlandt, A.E. Tekkaya, Formability of metallic materials: plastic anisotropy, formability testing, forming limits, Springer, Berlin, (2000).

DOI: 10.1007/978-3-662-04013-3

Google Scholar

[3] W. Truszkowski, The Plastic Anisotropy in Single Crystals and Polycrystalline Metals, Springer, Netherlands, (2001).

Google Scholar

[4] M.C. Smith, Principles of physical metallurgy, Harper & Brothers, New York, (1956).

Google Scholar

[5] F.V. Grechnikov, Deformation of Anisotropic Materials: Intensification Reserves), Mashinostroenie, Moscow, 1998. (In Russ. ).

Google Scholar

[6] D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, International Journal of Material Forming. 3 (2010) 165-189.

DOI: 10.1007/s12289-010-0992-9

Google Scholar

[7] L.S. Tóth, J. Hirsch, P. Van Houtte, On the role of texture development in the forming limits of sheet metals, International Journal of Mechanical Sciences. 38 (1996) 1117-1126.

DOI: 10.1016/0020-7403(95)00110-7

Google Scholar

[8] M.A.W. Lowden, W.B. Hutchinson, Texture strengthening and strength differential in titanium-6Al-4V, Metallurgical Transactions A. 6(3) (1975) 441-448.

DOI: 10.1007/bf02658401

Google Scholar

[9] S. Güngör, L. Edwards, Effect of surface texture on the initiation and propagation of small fatigue cracks in a forged 6082 aluminium alloy, Materials Science and Engineering A. 160(1) (1993) 17-24.

DOI: 10.1016/0921-5093(93)90493-x

Google Scholar

[10] X.J. Wu, W. Wallace, M.D. Raizenne, A.K. Koul, The orientation dependence of fatigue-crack growth in 8090 Al-Li plate, Metallurgical and Materials Transactions A. 25(3) (1994) 575-588.

DOI: 10.1007/bf02651599

Google Scholar

[11] A.J. Moses, Electrical steels. Past, present and future developments, IEE Proceedings A: Physical Science. Measurement and Instrumentation. Management and Education. Reviews. 137 (1990) 233-245.

DOI: 10.1049/ip-a-2.1990.0039

Google Scholar

[12] G.H. Shirkoohi, M.A.M. Arikat, Anisotropic properties of high permeability grain-oriented 3. 25% Si-Fe electrical steel, IEEE Transactions on Magnetics. 30 (1994) 928-930.

DOI: 10.1109/20.312448

Google Scholar

[13] F. Barlat, Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals, Materials Science and Engineering. 91(C) (1987) 55-72.

DOI: 10.1016/0025-5416(87)90283-7

Google Scholar

[14] O. Engler, J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications - a review, Materials Science and Engineering A. 336 (2002) 249-262.

DOI: 10.1016/s0921-5093(01)01968-2

Google Scholar

[15] W.B. Hutchinson, A. Oscarsson, A. Karlsson, Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands, Materials Science and Technology. 5 (1989) 1118-1127.

DOI: 10.1179/mst.1989.5.11.1118

Google Scholar

[16] V. Pegada, Y. Chun, S. Santhanam, An algorithm for determining the optimal blank shape for the deep drawing of aluminum cups, Journal of Materials Processing Technology. 125-126 (2002) 743-750.

DOI: 10.1016/s0924-0136(02)00382-5

Google Scholar

[17] S. -W. Lo, J. -Y. Lee, Optimum blank shapes for prismatic cup drawing - Consideration of friction and material anisotropy, Journal of Manufacturing Science and Engineering, Transactions of the ASME. 120(2) (1998) 306-315.

DOI: 10.1115/1.2830128

Google Scholar

[18] S.H. Park, J.W. Yoon, D.Y. Yang, Y.H. Kim, Optimum blank design in sheet metal forming by the deformation path iteration method, International Journal of Mechanical Sciences, 41(10) (1999) 1217-1232.

DOI: 10.1016/s0020-7403(98)00084-8

Google Scholar

[19] D.V. Wilson, Plastic anisotropy in sheet metals, J. Inst. Metals. 94(84) (1966) 3-8.

Google Scholar

[20] R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, (1998).

Google Scholar

[21] W. Han, D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Springer, Berlin, (2013).

Google Scholar

[22] J. Chakrabarty, Applied Plasticity, Springer, Berlin, (2010).

Google Scholar

[23] F.V. Grechnikov, Ya.A. Erisov, Development of yield criteria for calculation of forming of highly textured anisotropic blanks, Vestn. Samara Gos. Aerokosm. Univ. 1 (2012) 94-99. (In Russ).

Google Scholar