Determination of Rheological Properties of Titanium Alloys under Conditions of High Strain Rates

Article Preview

Abstract:

This article considers the method of determining the parameters of the rheological properties of material of titanium alloy BT6 used in aircraft engine technology, under face milling. Calculations were carried out in CAE system Deform using FEM - model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-226

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tönshoff, H.K., Bussmann, W., and Stanske, C., 1986, Requirements on Tools and Machines when Machining Hard Materials, Proc. of the 26th Int. Mach. ToolandRes. Conf. pp.349-357.

DOI: 10.1007/978-1-349-08114-1_45

Google Scholar

[2] Khaimovich, А. Balaykin, A. Galkina, N. (2015) Study of Rheological Properties of Materials at the Blade Processing on Example of Milling Nickel-Chromium Alloy 10H11N23T3 MR VD, Applied Mechanics and Materials, vol. 756 (2015) pp.120-125.

DOI: 10.4028/www.scientific.net/amm.756.120

Google Scholar

[3] Komissarov V. I., investigation of the machinability of titanium and heat-resistant materials in face milling. Kuibyshev, 1962, 365 p.

Google Scholar

[4] Luca Settineri, Paolo C. Priarone, Martin Arft, Dieter Lung (2014).

Google Scholar

[5] ShijunZhang , and Zhanqiang Liu, An analytical model for transient temperature distributions in coated carbide cutting tools, International Communications in Heat and Mass Transfer, vol. 35, p.1311–1315, (2008).

DOI: 10.1016/j.icheatmasstransfer.2008.08.001

Google Scholar

[6] Y. Wan, Z.T. Tang, Z.Q. Liu, X. Ai, The assessment of cutting temperature measurements in high-speed machining, in Materials Science Forum, (2004).

DOI: 10.4028/www.scientific.net/msf.471-472.162

Google Scholar

[7] E. Merchant, Basic mechanics of the metal cutting process, J. of Applied Mechanics, 66, (1944) 168-175.

Google Scholar

[8] F. Klockea, D. Lunga, H. Puls (2013), FEM-Modelling of the thermal workpiece deformation in dry turning, Procedia CIRP 8 ( 2013 ) 240 – 245.

DOI: 10.1016/j.procir.2013.06.096

Google Scholar

[9] Arrazola P.J.; Özel, T.; Umbrello, D. ; Davies, M.; Jawahir, I. S. Recent advancesinmodelling of metal machining processes. P.L.B. Oxley, Mechanics of metal cutting, ASME, (1963) 50-60.

DOI: 10.1016/j.cirp.2013.05.006

Google Scholar

[10] Kiliçaslan, C. Modelling and simulation of metal cutting by finite element method. Master's degree thesis. Ýzmir Institute of Technology, Turkey, (2009).

Google Scholar

[11] M. Fontaine, A. Devillez, A. Moufki and D. Dudzinski, Predictive force model for ball end milling and experimental validation with a wavelike form machining test, Int. J. Machine Tools and Manufacture, 46, (2006) 367-380.

DOI: 10.1016/j.ijmachtools.2005.05.011

Google Scholar

[12] Luca Settineri, Paolo C. Priarone, Martin Arft, Dieter Lung (2014).

Google Scholar

[13] Khaimovich, А. Balaykin, A. (2014) Analysis of plastic properties of titanium alloys under severe deformation conditions in machining, International Journal of Engineering and Technology, 6(5): 2184-2190.

Google Scholar

[14] Khaimovich, А. Balaykin, A. Kondratiev, A. (2014).

Google Scholar

[15] Khaimovich, А. Balaykin, A. (2014).

Google Scholar

[16] Yuanli Bai, Tomasz Wierzbicki (2008) A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity 24 (2008) 1071–1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[17] H. Puls, F. Klocke, D. Lung (2014) Experimental investigation on friction under metal cutting conditions, Wear310 (2014)63–71.

DOI: 10.1016/j.wear.2013.12.020

Google Scholar