[1]
P. Lv, Z. Zhang, X. Wang, L. Ji, X. Hou and Q. Guan, Microstructure evolution of 2024 and 7A09 aluminum alloys subjected to thermal cycling in simulated LEO space environment, Materials Research Innovations. 18(3) (2014).
DOI: 10.1179/1433075x13y.0000000182
Google Scholar
[2]
M.H.M. Kouters, H.M. Slot, W. van Zwieten and J. van der Veer, The influence of hydrogen on the fatigue life of metallic leaf spring components in a vacuum environment, International Journal of Fatigue. 59 (2014).
DOI: 10.1016/j.ijfatigue.2013.09.013
Google Scholar
[3]
J.F. Chen, J.T. Jiang, L. Zhen and W.Z. Shao, Stress relaxation behavior of an Al-Zn-Mg-Cu alloy in simulated age-forming process, Journal of Materials Processing Technology. 2014(4) (2014) 775-783. DOI: 10. 1016/j. jmatprotec. 2013. 08. 017.
DOI: 10.1016/j.jmatprotec.2013.08.017
Google Scholar
[4]
J.T. Maximov, G.V. Duncheva and A.P. Anchev, An approach to modeling time-dependent creep and residual stress relaxation around cold worked holes in aluminum alloys at room temperature, Engineering Failure Analysis. 45 (2014).
DOI: 10.1016/j.engfailanal.2014.06.008
Google Scholar
[5]
M.H. Andrino, A.A. Dos Santos Jr., D.E. Bray and R.E. Trevisan, Stress relaxation in aluminum welding using ultrasonic method, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP. 5 (2008).
DOI: 10.1115/pvp2007-26662
Google Scholar
[6]
W. -Y. Li, X. -P. Guo, L. Dembinski, H. -L. Liao and C. Coddet, Effect of vacuum heat treatment on microstructure and microhardness of cold sprayed Cu-4Cr-2Nb alloy coating, Transactions of Nonferrous Metals Society of China. 16 (2006).
DOI: 10.1016/s1003-6326(06)60176-3
Google Scholar
[7]
J. -S. Wang, C. -C. Hsieh, C. -M. Lin, E. -C. Chen, C. -W. Kuo and W. Wu, The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy, Materials Science and Engineering. 605 (2014).
DOI: 10.1016/j.msea.2014.03.037
Google Scholar
[8]
U. Quadfasel, H. Mecking and Y. Estrin, Continuous and cyclic stress relaxation in aluminum, Materials Science and Engineering: A. 149(1) (1991) 29-39. DOI: 10. 1016/0921-5093(91)90783-J.
DOI: 10.1016/0921-5093(91)90783-j
Google Scholar
[9]
J.K. Solberg and H. Thon, Stress relaxation and creep of some aluminum alloys, Materials Science and Engineering. 75(1-2) (1985) 105-116. DOI: 10. 1016/0025-5416(85)90182-X.
DOI: 10.1016/0025-5416(85)90182-x
Google Scholar
[10]
A.A. Aly, T.G. Abdel-Malik, A.M. Abdeen and H.M. Ellabany, Stress relaxation in single crystals of copper and aluminum, Materials Science and Engineering. 62(2) (1984) 181-185. DOI: 10. 1016/0025-5416(84)90220-9.
DOI: 10.1016/0025-5416(84)90220-9
Google Scholar
[11]
A.N. Logvinov, V.I. Tregub, O.K. Kolerov and V.D. Yushin, A specimen for testing materials for bending stress relaxation, Measurement Techniques, 35(11) (1992) 1295-1297.
DOI: 10.1007/bf01821918
Google Scholar
[12]
Ya.E. Geguzin, Physical fundamentals of sintering, second ed., Science, Moscow, (1984).
Google Scholar