[1]
ShtremelM. A . The strength of alloys. Part II. Deformation. Textbook for high schools. M .: MISA, 1997. 527 pp.
Google Scholar
[2]
ValievR.Z., IV Alexandrov I.V. Nanostructured materials produced by severe plastic de formation. M .: Logos, 2000. 272 pp.
Google Scholar
[3]
Raab G., Valiev R., Lowe Т., Zhu Y. Continuous processing of ultrafine grained A1 by ECAP-Conform / Materials Science and Engineering. 2004. A. 382. P. 30-34.
DOI: 10.1016/j.msea.2004.04.021
Google Scholar
[4]
BashninY.A. UshakovB.K., Sekey A.G. The technology of heat treatment - M .: Metallurgy, 1986., 424 pp.
Google Scholar
[5]
Sakai G., Horita Z., Langdon T. G. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion / Materials Science and Engineering. 2005. A. 393. P. 344-351.
DOI: 10.1016/j.msea.2004.11.007
Google Scholar
[6]
Popov A. A., Pyshmintsev I. Yu., Demakov S. L., Illarionov A. G., Lowe T. C., Sergeyeva A. V. and Valiev R. Z. Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation / ScriptaMaterialia. 1997. V. 37. No. 7. P. 1089-1094.
DOI: 10.1016/s1359-6462(97)00210-8
Google Scholar
[7]
Wetscher F., Vorhauer A., Stock R., Pippan R. Structural refinement of low alloyed steels during severe plastic deformation / Materials Science and Engineering. 2004. A. 387-389. P. 809-816.
DOI: 10.1016/j.msea.2004.01.096
Google Scholar
[8]
Valiev R. Z., Ivanisenko YU. V., Rauch E. F. and Baudelet B. Structure and deformation behaviour of armco iron subjected to severe plastic deformation / Acta mater. 1996. V. 44. No. 12. P. 4705-4712.
DOI: 10.1016/s1359-6454(96)00156-5
Google Scholar
[9]
Valiev R. Z. Structure and mechanical properties of ultrafine-grained metals / Materials Science and Engineering. 1997. A. 234-236. P. 59-66.
DOI: 10.1016/s0921-5093(97)00183-4
Google Scholar
[10]
Mironov S. Yu., Salishchev G. A., Myshlyaev M. M., Pippan R. Evolution of misorientation distribution during warm abc, forging of commercial-purity titanium /Materials Science and Engineering. 2006. A. 418. P. 257—267.
DOI: 10.1016/j.msea.2005.11.026
Google Scholar
[11]
Zherebtsov S. V., Salishchev G. A., Galeyev R. M., Valiakhmetov. O. R., Mironov S. Yu., Semiatin S. L. Production of submicrocrystalline structure in large- scale Ti-6A1—4V billet by warm severe deformation processing / ScriptaMaterialia. 2004. V. 51. P. 1147-1151.
DOI: 10.1016/j.scriptamat.2004.08.018
Google Scholar
[12]
Horita Z., Furukawa M., Nemoto M., Langdon T. G. Development of fine grained structures using severe plastic deformation / Materials Science and Technology. 2000. V. 16. P. 1239-1245.
DOI: 10.1179/026708300101507091
Google Scholar
[13]
Gholina A., Prangnell P. В., Markushev M. V. The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE / Acta mater. 2000. V. 48. P. 1115-1130.
DOI: 10.1016/s1359-6454(99)00388-2
Google Scholar
[14]
Horita Z., Furukawa M., Nemoto M., Barnes A. J. and Langdon T. G. Superplastic forming at high strain rates after severe plastic deformation / Acta Mater. 2000. V. 48. P. 3633-3640.
DOI: 10.1016/s1359-6454(00)00182-8
Google Scholar
[15]
Apps P. J., Bowen J. R., Prangnell P. B. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing / ActaMaterialia. 2003. V. 51. P. 2811-2822.
DOI: 10.1016/s1359-6454(03)00086-7
Google Scholar
[16]
Xu C., Furukawa M., Horita Z., Langdon T. G. The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP / Materials Science and Engineering. 2005. A. 398. P. 66-76.
DOI: 10.1016/j.msea.2005.03.083
Google Scholar
[17]
Zhilyaev A. P., Kim B. -K., Szpunar J. A., Baro M. D., Langdon T. G. The microstructural characteristics of ultrafine-grained nickel / Materials Science and Engineering. 2005. A. 391. P. 377-389.
DOI: 10.1016/j.msea.2004.09.030
Google Scholar
[18]
NayzabekovA.B., LezhnyovS.N., PaninE.A. Theoretical studies of the combined process of rolling-pressing, using equal channel speed matrix. / Math. universities. FerrousMetallurgy, Moscow, 2008, №6, pp.22-26.
Google Scholar
[19]
Lezhnev, S., Panin, E., Volokitina, I. Research of combined process rolling-pressing influence on the microstructure and mechanical properties of aluminium. Advanced Materials Research.
DOI: 10.4028/www.scientific.net/amr.814.68
Google Scholar
[20]
Huang Y., Prangnell P. B. The effect of cryogenic temperature and change in deformation mode on the limiting grain size in a severely deformed dilute aluminium alloy/Acta Mater. 2008. V. 56. P. 1619-1632.
DOI: 10.1016/j.actamat.2007.12.017
Google Scholar
[21]
Humphreys F. J., Prangnell P. B., Bowen J. R., Gholinia A. and Harris C. Developing stable fine-grain microstructures by large strain deformation / Phil. Trans. R. Soc. Lond. 1999. A. 357. P. 1663-1681.
DOI: 10.1098/rsta.1999.0395
Google Scholar
[22]
Lee Y-B., Shin D-H., Nam W-J. Annealing behavior of 5083 A1 alloy deformed at cryogenic temperature / Journal of Materials Science. 2005. V. 40. P. 797- 799.
DOI: 10.1007/s10853-005-6327-4
Google Scholar
[23]
Larbalestier D. C. and King H. W. Austenitic stainless steels at cryogenic temperatures 1 - Structural stability and magnetic properties / Cryogenics. 1973. V. 3.P. 160-168.
DOI: 10.1016/0011-2275(73)90285-3
Google Scholar
[24]
The localization of plastic deformation and structural and non-equilibrium expansion trans-formations - Selected Works. Compilers Kenzhaliyev B.K. Chernoglazova T.V., Mofa N.N., Degtyareva A.S., Kurapov G.G., Suleimenov E.N. Ed. Complex, Almaty, (2004).
Google Scholar
[25]
Essen Suleymenov, B.K. Kenzhaliev, A.V. Panichkin, G.G. Kurapov, A.G. Degtyareva and N.N., Mofa. The necessity of new scieintificbase for development of advanced technologies in metallurgy. Diamond Jubilee Symposium on Advances in Materials Engineering. Banglagor, 4-6 July, 2007. p.52.
Google Scholar