[1]
H. Gleiter, Nanocristalline materials, Physica status Solidi. 172 (1992) 41.
Google Scholar
[2]
R.Z. Valiev, I.V. Alexandrov, Nanostructured materials produced by severe plastic deformation, Logos, Moscow, 2000. (in Russian).
Google Scholar
[3]
R.Z. Valiev, Nanomaterial Advantage, Nature. 419 (2002) 887-889.
Google Scholar
[4]
R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials. 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[5]
G.A. Salishchev, R.M. Galeev, S.V. Zherebtsov, A.M. Smyslov, E.V. Safin, M.M. Myshlyaev, Mechanical properties of Ti-based alloy VT6 with microcrystalline and submicrocrystalline structures, Metally. 6 (1999) 84 - 87 (in Russian).
Google Scholar
[6]
G.A. Salishchev, S. Zherebtsov, S. Malysheva, A. Smyslov, E. Saphin, N. Izmaylova, Mechanical Properties of Ti–6Al–4V Titanium Alloy with Submicrocrystalline Structure Produced by Multiaxial Forging, Mat. Sci. Forum. 584-586 (2008) 783-788.
DOI: 10.4028/www.scientific.net/msf.584-586.783
Google Scholar
[7]
M.I. Guseva, A.M. Smyslov, E.V. Safin, et al, RF Patent № 2117073 MKI6 C23C 14/48. (1998).
Google Scholar
[8]
C.C. Koch, D.G. Morris, K. Lu, Inoue, Ductility of nanostructured materials, Materials Research Society Bull. 24 (1999) 54-58.
DOI: 10.1557/s0883769400051551
Google Scholar
[9]
J.R. Weertman, D. Farcas, K. Hemker et. al., Structure and mechanical behavior of nanocrystalline materials, Materials Research Society Bull. 24 (1999) 5-8.
Google Scholar
[10]
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, Journal of Materials Research. 17 (2002) 44-50.
DOI: 10.1557/jmr.2002.0002
Google Scholar
[11]
Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Letters of Nature. 419 (2002) 912-914.
DOI: 10.1038/nature01133
Google Scholar
[12]
C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scripta Materialia. 49 (2003) 657-662.
DOI: 10.1016/s1359-6462(03)00394-4
Google Scholar
[13]
E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Materialia. 49 (2003) 663-668.
DOI: 10.1016/s1359-6462(03)00396-8
Google Scholar
[14]
Y. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Materialia. 52 (2004) 1699-1709.
DOI: 10.1016/j.actamat.2003.12.022
Google Scholar
[15]
J. Gil Sevillano, J. Aldazabal, Ductilization of nanocrystalline materials for structural applications, Scripta materialia. 51 (2004) 795-800.
DOI: 10.1016/j.scriptamat.2004.05.015
Google Scholar
[16]
G.A. Malygin, Ductility and strength of micro and nanocrystalline materials, Physics of the Solid State. 6 (2007) 961 – 982 (in Russian).
Google Scholar
[17]
Yu.R. Kolobov, G.P. Grabovetskaya, Severe Plastic Deformation. Toward Bulk Production of Nanostructured Materials, Nova Science Publishers, Inc. Monograph, 2005, pp.275-293.
Google Scholar
[18]
V.V. Stolyarov, Impact strength of nanostructured Ti, Metal Science and Heat Treatment. 2 (2007) 13-16 (in Russian).
Google Scholar