[1]
L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P. W. Shindo, Francisco, R. Medina, R. B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. of Mat. Sci. & Tech. 28 (2012).
DOI: 10.1016/s1005-0302(12)60016-4
Google Scholar
[2]
G.A. Turichin, E.V. Zemlyakov, O. G Klimova, K.D. Babkin, F.A. Shamray, D. Yu. Kolodiajniy, Direct laser deposition – perspective additive technology for aircraft engine, Sv. and Diagn. 3 (2015) 54-57.
Google Scholar
[3]
D. Gu, New metallic materials development by laser additive manufacturing, in: J. Lawrence and D. G. Waugh, Laser Surface Engineering, Elsevier Ltd., (2015) 163-180.
DOI: 10.1016/b978-1-78242-074-3.00007-6
Google Scholar
[4]
B. Kianiana, S. Tavassoli, T. C. Larsson, The Role of Additive Manufacturing Technology in Job Creation: An Exploratory Case Study of Suppliers of Additive Manufacturing in Sweden, Procedia in: CIRP, 12th Gl. Conf. Sust. Manuf. / Em. Pot. 26 (2015).
DOI: 10.1016/j.procir.2014.07.109
Google Scholar
[5]
C.E. Siemieniuch, M.A. Sinclair, M.J. deC. Henshaw, Global drivers, sustainable manufacturing and systems ergonomics, Appl. Erg. 51 (2015) 104–119.
DOI: 10.1016/j.apergo.2015.04.018
Google Scholar
[6]
D. R. Gress, R.V. Kalafsky, Geographies of production in 3D: Theoretical and research implications stemming from additive manufacturing, Geoforum. 60 (2015) 43–52.
DOI: 10.1016/j.geoforum.2015.01.003
Google Scholar
[7]
J. Michael Wilson, C. Piya, Y. C. Shin, F. Zhao, K. Ramani, Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, J. of Clean. Prod. 80 (2014) 170-178.
DOI: 10.1016/j.jclepro.2014.05.084
Google Scholar
[8]
S. M. Thompsona, L. Bianc, N. Shamsaeia, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Add. Manuf. 8 (2015) 36–62.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[9]
E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties, Prog. in Mat. Sci. 74 (2015) 401-477.
DOI: 10.1016/j.pmatsci.2015.03.002
Google Scholar
[10]
G.A. Turichin, E.V. Zemlyakov, E. Yu. Pozdeeva, J. Tuominen, P. Vuoristo, Technological possibilities of laser cladding with the help of powerful fiber lasers, Met. Sci. and Heat Treat. Vol. 54 (2012) 139-144.
DOI: 10.1007/s11041-012-9470-y
Google Scholar
[11]
G.A. Turichin, V.V. Somonov, O.G. Klimova, Investigation and modeling of the process of formation of the pad weld and its microstructure during laser cladding by radiation of high power fiber laser, Appl. Mech. and Mat. 682 (2014) 160-165.
DOI: 10.4028/www.scientific.net/amm.682.160
Google Scholar
[12]
G.A. Turichin, E.A. Valdaitseva, E. Yu. Pozdeeva, E.V. Zemlyakov, Influence of aerodynamic forces on the transfer of powder to a planar substrate by laser deposition, in Proc. VI Int. Conf. BT/LA (2009) 42-47.
Google Scholar
[13]
S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting / J. of Mat. Sci. & Tech. 31 (2015) 946–952.
DOI: 10.1016/j.jmst.2014.09.020
Google Scholar
[14]
N. Shamsaei, A. Yadollahi, L. Bian, S. M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Add. Manuf. 8 (2015) 12-35.
DOI: 10.1016/j.addma.2015.07.002
Google Scholar
[15]
R. C. Reed, The Superalloys Fundamentals and Applications, first ed., Cambridge. (2006).
Google Scholar