Quality Management of Metal Products Prepared by High-Speed Direct Laser Deposition Technology

Article Preview

Abstract:

In this article the technology “high-speed direct laser deposition” is performed. Influence of process parameters on product properties and material structure was defined for Ni-based alloy Inconel 625. Developed technology provided the mechanic properties of products on the bottom level of rolled metal and allows avoid heat treatment and HIP in production process. Economic efficiency of this technology is demonstrated for main areas of industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

461-467

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P. W. Shindo, Francisco, R. Medina, R. B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. of Mat. Sci. & Tech. 28 (2012).

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[2] G.A. Turichin, E.V. Zemlyakov, O. G Klimova, K.D. Babkin, F.A. Shamray, D. Yu. Kolodiajniy, Direct laser deposition – perspective additive technology for aircraft engine, Sv. and Diagn. 3 (2015) 54-57.

Google Scholar

[3] D. Gu, New metallic materials development by laser additive manufacturing, in: J. Lawrence and D. G. Waugh, Laser Surface Engineering, Elsevier Ltd., (2015) 163-180.

DOI: 10.1016/b978-1-78242-074-3.00007-6

Google Scholar

[4] B. Kianiana, S. Tavassoli, T. C. Larsson, The Role of Additive Manufacturing Technology in Job Creation: An Exploratory Case Study of Suppliers of Additive Manufacturing in Sweden, Procedia in: CIRP, 12th Gl. Conf. Sust. Manuf. / Em. Pot. 26 (2015).

DOI: 10.1016/j.procir.2014.07.109

Google Scholar

[5] C.E. Siemieniuch, M.A. Sinclair, M.J. deC. Henshaw, Global drivers, sustainable manufacturing and systems ergonomics, Appl. Erg. 51 (2015) 104–119.

DOI: 10.1016/j.apergo.2015.04.018

Google Scholar

[6] D. R. Gress, R.V. Kalafsky, Geographies of production in 3D: Theoretical and research implications stemming from additive manufacturing, Geoforum. 60 (2015) 43–52.

DOI: 10.1016/j.geoforum.2015.01.003

Google Scholar

[7] J. Michael Wilson, C. Piya, Y. C. Shin, F. Zhao, K. Ramani, Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, J. of Clean. Prod. 80 (2014) 170-178.

DOI: 10.1016/j.jclepro.2014.05.084

Google Scholar

[8] S. M. Thompsona, L. Bianc, N. Shamsaeia, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Add. Manuf. 8 (2015) 36–62.

DOI: 10.1016/j.addma.2015.07.001

Google Scholar

[9] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties, Prog. in Mat. Sci. 74 (2015) 401-477.

DOI: 10.1016/j.pmatsci.2015.03.002

Google Scholar

[10] G.A. Turichin, E.V. Zemlyakov, E. Yu. Pozdeeva, J. Tuominen, P. Vuoristo, Technological possibilities of laser cladding with the help of powerful fiber lasers, Met. Sci. and Heat Treat. Vol. 54 (2012) 139-144.

DOI: 10.1007/s11041-012-9470-y

Google Scholar

[11] G.A. Turichin, V.V. Somonov, O.G. Klimova, Investigation and modeling of the process of formation of the pad weld and its microstructure during laser cladding by radiation of high power fiber laser, Appl. Mech. and Mat. 682 (2014) 160-165.

DOI: 10.4028/www.scientific.net/amm.682.160

Google Scholar

[12] G.A. Turichin, E.A. Valdaitseva, E. Yu. Pozdeeva, E.V. Zemlyakov, Influence of aerodynamic forces on the transfer of powder to a planar substrate by laser deposition, in Proc. VI Int. Conf. BT/LA (2009) 42-47.

Google Scholar

[13] S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting / J. of Mat. Sci. & Tech. 31 (2015) 946–952.

DOI: 10.1016/j.jmst.2014.09.020

Google Scholar

[14] N. Shamsaei, A. Yadollahi, L. Bian, S. M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Add. Manuf. 8 (2015) 12-35.

DOI: 10.1016/j.addma.2015.07.002

Google Scholar

[15] R. C. Reed, The Superalloys Fundamentals and Applications, first ed., Cambridge. (2006).

Google Scholar