[1]
V.S. Ajaev, Spreading of thin volatile liquid droplets on uniformly heated surfaces, J. Fluid Mechanics, 528, (2005), 279-296.
DOI: 10.1017/s0022112005003320
Google Scholar
[2]
I. V. Marchuk, Thermocapillary Deformation of a Thin Locally Heated Horizontal Liquid Layer, J. Engineering Thermophysics, vol. 18, (2009), 227-237.
DOI: 10.1134/s1810232809030047
Google Scholar
[3]
O.A. Kabov and D.V. Zaitsev, Effect of Shear Stress and Gravity On Rupture of a Locally Heated Liquid Film, J. Multiphase Science and Technology, vol. 21, Is. 3, (2009), 249- 266.
DOI: 10.1615/multscientechn.v21.i3.40
Google Scholar
[4]
N. Silvi and V. Dussan, On the Rewetting of an Inclined Solid Surface by a Liquid, J. Physics Fluids, vol. 28, № 1, (1985), 5-7.
DOI: 10.1063/1.865410
Google Scholar
[5]
O.A. Kabov, Formation of Regular Structures in Flowing Liquid Film When Local Heating, J. Thermophysics and Aeromechanics, vol. 5, № 4, (1998), 597- 602.
Google Scholar
[6]
B. Horacek, K. Kiger, and J. Kim, Single Nozzle Spray Cooling Heat Transfer Mechanisms, J. Heat and Mass Transfer, vol. 48, № 8, pp.1425-1438, (2005).
DOI: 10.1016/j.ijheatmasstransfer.2004.10.026
Google Scholar
[7]
Y.D. Shikhmurzaev, Spreading of Drops On Solid Surfaces in a Quasi-Static Regime, J. Physics Fluids, vol. 9, Is. 2, (1997), 266-275.
DOI: 10.1063/1.869147
Google Scholar
[8]
I. А. Gainova, Е. I. Sagaidak, and V. N. Popov, Modeling of Deposition of Droplets On Metal Substrate, Sib. J. Industrial Mathematics, vol. 7, № 4, (2004), 36-47.
Google Scholar
[9]
V.I. Polegaev, A.V. Bune, N.А. Verezub, et al., Mathematic Modeling Convective Heat and Mass Transfer On the Basis of the Navier-Stokes. М.: Science, (1987).
Google Scholar
[10]
А.А. Samarskiy and P.N. Vabischevitch, Computational Heat Transfer. М.: Editorial URSS, (2003).
Google Scholar
[11]
G.V. Kuznetsov and A.V. Krainov, Conjugate Heat Exchange and Hydrodynamics For a Viscous Incompres- sible Fluid Moving in a Rectangular Cavity, J. Applied Mechanics and Technical Physics, vol. 42, №5, (2001), 851- 856.
Google Scholar
[12]
A.V. Krainov, Conjugate Heat Exchange For a Viscous Incompressible Fluid Moving in a Rectangular Cavity Under Conditions Non-Uniformity Phase Characteristics, Proceedings of International Conference Conjugate Problems of Mechanics, Computer Science and Ecology, (2004).
Google Scholar
[13]
V.К. Andreev, Y.А. Eaponenko, О.N. Eoncharova, and V.V. Puhnachev, Modern Mathematical Models of Convection. М.: Physico-Mathematical Literature, (2008).
Google Scholar
[14]
A.V. Kraynov, E.N. Pashkov, A.V. Ponomarev, Conjugate Heat Transfer in the Interaction of the Viscous Liquid with Technological Elements of Energy Systems in Conditions of their Internal Contour Moving, Advanced Materials Research, 1040 (2014).
DOI: 10.4028/www.scientific.net/amr.1040.876
Google Scholar
[15]
A.V. Kraynov, E.N. Pashkov, P.G. Yurovsky, Heat and Mass Transfer in Viscous Fluid Flows in Open Cavities with Moving Boundaries under Cooling the External Contour, Advanced Materials Research, 1040 (2014) 638-641.
DOI: 10.4028/www.scientific.net/amr.1040.638
Google Scholar