A Three-Dimensional Boundary Element Approach for Transient Anisotropic Viscoelastic Problems

Article Preview

Abstract:

This paper presents a three-dimensional direct boundary element approach for solving transient problems of linear anisotropic elasticity and viscoelasticity. In order to take advantage of the correspondence principle between viscoelasticity and elasticity the formulation is given in the Laplace domain. Anisotropic viscoelastic fundamental solutions are obtained using the correspondence principle and anisotropic elastic Green’s functions. The standard linear solid model is used to represent the mechanical behavior of viscoelastic material. Solution in time domain is calculated via numerical inversion by modified Durbin’s method. Numerical example is provided to validate the proposed boundary element formulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-271

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Y. Wang, J.D. Achenbach, Elastodynamic fundamental solution for anisotropic solids, Geophys. J. Int. 118 (1994) 384-392.

DOI: 10.1111/j.1365-246x.1994.tb03970.x

Google Scholar

[2] C.Y. Wang, J.D. Achenbach, Three-dimensional time-harmonic elastodynamic Green's functions for anisotropic solids, Proc. R. Soc. A 449 (1995) 441-458.

DOI: 10.1098/rspa.1995.0052

Google Scholar

[3] A. Saez, J. Domínguez, Bem analysis of wave scattering in transversely isotropic solids, Int. J. Numer. Methods Eng. 44 (1999) 1283-1300.

DOI: 10.1002/(sici)1097-0207(19990330)44:9<1283::aid-nme544>3.0.co;2-o

Google Scholar

[4] C.Y. Wang, J.D. Achenbach, S. Hirose, Two-dimensional time domain BEM for scattering of elastic waves in solids of general anisotropy, Int. J. Solids. Struct. 33 (1996) 3843-3864.

DOI: 10.1016/0020-7683(95)00217-0

Google Scholar

[5] A. Tan, S. Hirose, C. Zhang, A time-domain collocation-Galerkin BEM for transient dynamic crack analysis in anisotropic solids, Eng. Anal. Boundary. Elem. 29 (2005) 1025-1038.

DOI: 10.1016/j.enganabound.2005.05.009

Google Scholar

[6] M. Denda, C.Y. Wang, Y.K. Yong, 2-d time-harmonic BEM for solids of general anisotropy with application to eigenvalue problems, J. Sound. Vib. 261 (2003) 247-276.

DOI: 10.1016/s0022-460x(02)00957-4

Google Scholar

[7] Y. Niu, M. Dravinski, Three-dimensional BEM for scattering of elastic waves in general anisotropic media, Int. J. Numer. Meth. Eng. 58 (2003) 979-998.

DOI: 10.1002/nme.803

Google Scholar

[8] X. Zhao, An efficient approach for the numerical inversion of Laplace transform and its application in dynamic fracture analysis of a piezoelectric laminate, Int. J. Solids. Struct. 41 (2004) 3653-3674.

DOI: 10.1016/j.ijsolstr.2004.01.006

Google Scholar

[9] K. L. Kuhlman, Review of inverse Laplace transform algorithms for Laplace-space numerical approaches, Numer. Algorithms 63 (2013) 339-355.

DOI: 10.1007/s11075-012-9625-3

Google Scholar

[10] M. Dravinski, Y. Niu, Three-dimensional time-harmonic Green's functions for a triclinic full-space using a symbolic computation system, Int. J. Numer. Meth. Eng. 53 (2002) 455-472.

DOI: 10.1002/nme.292

Google Scholar