Propellant Grain with Maximum Combustion Efficiency of Metal

Article Preview

Abstract:

This paper reports on the ways of allocating the metal particles in the propellant grain of tube cross-sectional type to provide maximum combustion efficiency of metal. Two-dimensional flow field and the burning rate law govern a transport of the burning metal particles. The analytical correlation for the optimum allocation of metal particles in the case-bounded propellant grain of tube cross-sectional type under the assumption of equilibrium two-phase flow is deduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-329

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Maggi, A. Bandera, L. Galfetti, L. T. De Luca, Th. L. Jackson, Efficient solid rocket propulsion for access to space, Acta Astronautica, 66, 11-12, (2010) 1563-1573.

DOI: 10.1016/j.actaastro.2009.10.012

Google Scholar

[2] F. Daidzo, N. Tadahiko, K. Tekamega and S. Sedzo, Composition of the Propellant, Journal of Abstracts, no. 14 (III), 14П244П, (1978). (in Russian).

Google Scholar

[3] V. N. Vilyunov, A. B. Vorozhtsov and Yu. V. Feshchenko, Modeling of two-phase flow of a gas mixture with burning metal particles in a semienclosed channel, Combustion, Explosion and Shock Waves, 25, 3, (1989) 296-300.

DOI: 10.1007/bf00788801

Google Scholar

[4] F. Maggi, S. Dossi, L. T. De Luca, Combustion of metal agglomerates in a solid rocket core flow, Acta Astronautica, 92, 2, (2013) 163-171.

DOI: 10.1016/j.actaastro.2012.04.036

Google Scholar

[5] K. N. Volkov, Qualitative analysis and numerical simulation of the movement of a particle in a channel having permeable walls with account for the action of mass forces, Journal of Engineering Physics and Thermophysics, 86, 6 (2013) 1286-1293.

DOI: 10.1007/s10891-013-0952-6

Google Scholar

[6] A. F. Belyaev, Yu. V. Frolov, and A. I. Korotkov, Combustion and ignition of particles of finely dispersed aluminium, Combustion, Explosion and Shock Waves, 4, 3, (1968) 182-185.

DOI: 10.1007/bf00750857

Google Scholar

[7] R. S. Larson, Prediction of Aluminum Combustion Efficiency in Solid Propellant Rocket Motors, AIAA Journal, 25, 1, (1987) 82-91.

DOI: 10.2514/3.9585

Google Scholar

[8] S. W. Jane and A. B. Finkelstein, Laminar Pipe Flow with Injection and Suction through a Porous Wall, Transactions of ASME, 78, 4, (1956) 719-724.

DOI: 10.1115/1.4013794

Google Scholar