Friction Influence on the Accuracy of the Rotors Automatic Balance

Article Preview

Abstract:

In the given paper the influence of friction forces in the bearing on the accuracy of automatic balancing unbalanced rotors by pendular automatic balance devices is considered. Magnitude of residual offset of a rotor–pendulums system depending on the friction forces is received, that allows defining residual vibration of the mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

441-444

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Autobalancing device. Pashkov E.N., Zijakaev G.R., Schedrivyj K.V. patent RUS 67257 26. 03. (2007).

Google Scholar

[2] Autobalancing device. Zijakaev G.R., Pashkov E.N., Ovtin M. Je., Simutkin A.G. patent RUS 100248 27. 05. (2010).

Google Scholar

[3] Emanuelsson S. Introducing Automatic Balancing as a Means to Reduce Imbalance Induced Vibrations in Electrical and Air-Powered Hand-Held Angle Grinders (Power Tools). Proceeding, 49th International Appliance Technique Conference, (1998).

Google Scholar

[4] Miwa T., Suzuki K., Kawaguchi T., Kawakami Y., Ohtsu S., Date O. Reduction of grinder vibration by balancing. Industrial Health, 22 (1984) 59-74.

DOI: 10.2486/indhealth.22.59

Google Scholar

[5] Rajalingham C., Rakheja S. Whirl suppression in handheld power tool rotors using guided rolling balancers. J. Sound Vibr., 217(3) (1998) 453–466.

DOI: 10.1006/jsvi.1998.1780

Google Scholar

[6] Kim W.D., Kwon H.O., Jeon M.S. Dynamic Analysis and Design of the Ball Balancer of a DVD System Considering Frictional Contact. LG Electronics Inc., Home Appliance Laboratory, (1999).

Google Scholar

[7] Kim W., Chung J. Performance of automatic ball balancers on optical disc drives. Proc Instn Mech Engrs Part C: J Mechanical Engineering Science. 216 (2002) 1071-1080.

DOI: 10.1243/095440602761609443

Google Scholar

[8] Zhongkun H., Yunfei C. Dynamic Modeling and Optimization on the Automatic Balancing of a Washing Machine. Applied Mechanics and Materials, 620 (2014) 304-309.

DOI: 10.4028/www.scientific.net/amm.620.304

Google Scholar

[9] Xiaolong Z., Yabin D., Yumin H., Meijuan T., Forced Vibration of Rotor Suppressed by a Automatic Ball Balancer (Nonlinear Principal Resonances). Advanced Materials Research, 655-657 (2013) 551-557.

DOI: 10.4028/www.scientific.net/amr.655-657.551

Google Scholar

[10] Marijonas B., Jolanta J. Influence of Dynamic Viscosity on Automatic Dynamic Balance. Solid State Phenomena, 164 (2010) 127-132.

DOI: 10.4028/www.scientific.net/ssp.164.127

Google Scholar

[11] Royzman V., Bubulis A., Drach I. System Analysis of Automatic Balancing (Self-Balancing) Machine Rotors with Liquid Working Bodies. Solid State Phenomena, 147-149 (2009) 374-379.

DOI: 10.4028/www.scientific.net/ssp.147-149.374

Google Scholar

[12] E.N. Pashkov, A.M. Bogdan, I.A. Masson, Automatic Balancing Time of any Rotors at Full Speed. Advanced Materials Research, 1040 (2014) 886-891.

DOI: 10.4028/www.scientific.net/amr.1040.886

Google Scholar

[13] E.N. Pashkov, N.V. Martyushev, I.A. Masson, Evaluation of Gravitational Force Effect on Balancing Processes in Liquid-Type Autobalancing Devices. Advanced Materials Research 1040 (2014) 642-645.

DOI: 10.4028/www.scientific.net/amr.1040.642

Google Scholar

[14] E.N. Pashkov, N.V. Martyushev, I.A. Masson, Vessel ellipticity and eccentricity effect on automatic balancing accuracy, IOP Conference Series: Materials Science and Engineering, 66 (2014) 1-5.

DOI: 10.1088/1757-899x/66/1/012011

Google Scholar