Optimal Control Problem of Complex Heat Transfer for SP1 Approximation

Article Preview

Abstract:

The optimal control problem for evolution radiative heat transfer in SP1 approximation is considered. The problem is solved by weak form technique and Lagrange method. Numerical experiments for real materials are done.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Modest, Radiative Heat Transfer, Academic Pres, (2003).

Google Scholar

[2] A.E. Kovtanyuk, K.V. Nefedev, I.V. Prokhorov, Advanced computing method for solving of the polarized-radiation transfer equation, Lecture Notes in Computer Science 6083 LNCS (2010) 268-276.

DOI: 10.1007/978-3-642-14822-4_30

Google Scholar

[3] I.V. Prokhorov, The Cauchy problem for the radiative transfer equation with generalized conjugation conditions, Comput. Math. Math. Phys. 53 (5) (2013) 588–600.

DOI: 10.1134/s0965542513050114

Google Scholar

[4] S. Andre, A. Degiovanni, A theoretical study of the transient coupled conduction and radiation heat transfer in glass: phonic diffusivity measurements by the flash technique, Int. J. Heat Mass Transfer, 38 (18) (1995) 3401-3412.

DOI: 10.1016/0017-9310(95)00075-k

Google Scholar

[5] C.T. Kelley, Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations, Transport Theory Statist. Phys. 25 (2) (1996) 249-260.

DOI: 10.1080/00411459608204839

Google Scholar

[6] J.M. Banoczi, C.T. Kelley, A fast multilevel algorithm for the solution of nonlinear systems of conductive-radiative heat transfer equations, SIAM J. Sci. Comput. 19 (1) (1998) 266-279.

DOI: 10.1137/s1064827596302965

Google Scholar

[7] A.E. Kovtanyuk, N.D. Botkin, K. -H. Hoffmann, Numerical simulations of a coupled conductive-radiative heat transfer model using a modified Monte Carlo method, Int. J. Heat and Mass Transfer 55 (2012) 649-654.

DOI: 10.1016/j.ijheatmasstransfer.2011.10.045

Google Scholar

[8] A.E. Kovtanyuk, A. Yu. Chebotarev, An iterative method for solving a complex heat transfer problem, Applied Math. Comput. 219 (2013) 9356-9362.

DOI: 10.1016/j.amc.2013.03.091

Google Scholar

[9] A.E. Kovtanyuk, A. Yu. Chebotarev, N.D. Botkin, K. -H. Hoffmann, Solvability of P1 approximation of a conductive-radiative heat transfer problem, Applied Math. And Comput. 249 (2014) 247-252.

DOI: 10.1016/j.amc.2014.10.054

Google Scholar

[10] A.A. Amosov, On the solvability of a problem of radiative heat transfer, Soviet Physics Doklady 24 (1) (1979) 261-262.

Google Scholar

[11] A.A. Amosov, The limiting relation between two problems on radiative heat transfer, Soviet Physics Doklady 24 (11) (1979) 439-441.

Google Scholar

[12] A.E. Kovtanyuk, A. Yu. Chebotarev, N.D. Botkin, K. -H. Hoffmann, The unique solvability of a complex 3D heat transfer problem, J. Math. Anal. Appl. 409 (2014) 808-815.

DOI: 10.1016/j.jmaa.2013.07.054

Google Scholar

[13] A.E. Kovtanyuk, A. Yu. Chebotarev, Steady-state problem of complex heat transfer, Comput. Math. and Math. Phys. 54 (4) (2014) 719-726.

DOI: 10.1134/s0965542514040095

Google Scholar

[14] A.E. Kovtanyuk, A. Yu. Chebotarev, N.D. Botkin, K. -H. Hoffmann, Unique solvability of a steady-state complex heat transfer model, Communications in Nonlinear Science and Numerical Simulation 20 (2015) 776-784.

DOI: 10.1016/j.cnsns.2014.06.040

Google Scholar

[15] A.A. Astrakhantseva, A.E. Kovtanyuk, Numerical modeling the radiative-convective-conductive heat transfer, 2014 Int. Conf. on Computer Technologies in Physical and Engineering Applications, ICCTPEA 2014 - Proceedings 6893306 (2014) 106-107.

DOI: 10.1109/icctpea.2014.6893306

Google Scholar

[16] R. Pinnau, Analysis of optimal boundary control for radiative heat transfer modeled by the SPN system. Comm. Math. Sci., 5(4) (2007) 951-969.

DOI: 10.4310/cms.2007.v5.n4.a11

Google Scholar

[17] D. Clever, J. Lang, Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient, Optimal Control Appl. and Meth., 33(2) (2012) 157-175.

DOI: 10.1002/oca.984

Google Scholar

[18] O. Tse, R. Pinnau, Optimal control of a simplified natural convection-radiation model, Comm. Math. Sci., 11(3) (2013) 679-707.

DOI: 10.4310/cms.2013.v11.n3.a2

Google Scholar

[19] A.E. Kovtanyuk, A. Yu. Chebotarev, N.D. Botkin, K. -H. Hoffmann, Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer, J. of Math. Analysis and Applications 412 (2014) 520-528.

DOI: 10.1016/j.jmaa.2013.11.003

Google Scholar

[20] A.E. Kovtanyuk, A. Yu. Chebotarev, Optimal control of complex heat transfer, 2014, Int. Conf. on Computer Technologies in Physical and Engineering Applications, ICCTPEA 2014 - Proceedings 6893370 (2014) 221-222.

DOI: 10.1109/icctpea.2014.6893370

Google Scholar

[21] G. V. Grenkin, A. Yu. Chebotarev, A nonstationary problem of complex heat transfer, Computational Mathematics and Mathematical Physics, 54 (11) (2014) 1737-1747.

DOI: 10.1134/s0965542514110062

Google Scholar