Phenomenological Modeling of Rheological Properties of Polyetheretherketones Reinforced with High Modulus Carbon in the Machining Process by a Reversible Analysis Method

Article Preview

Abstract:

Results of modeling rheological properties (constitutive models) of composite material Victrex PEEK 90HMF20 by reversible analysis method at high-speed milling considering the direction of the reinforcing fiber are presented. Strain hardening until the moment of rupture was determined by the results of static tests of destruction at different temperatures. Coefficients of viscoplastic hardening and thermal softening were determined by the results of statistical processing of experimental milling samples of PEEK-based deformation velocity field obtained by simulation of the process of edge cutting machining in Deform 2D.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-123

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Davim, J. P., & Reis, P. (2004).

Google Scholar

[2] Hanafi, I., Khamlichi, A., Cabrera, F. M., Almansa, E., & Jabbouri, A. (2012). Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. Journal of Cleaner Production, 33, 1-9.

DOI: 10.1016/j.jclepro.2012.05.005

Google Scholar

[3] Hanafi, I., Khamlichi, A., Cabrera, F. M., Nuñez López, P. J., & Jabbouri, A. (2012).

Google Scholar

[4] Mata, F., Gaitonde, V. N., Karnik, S. R., & Davim, J. P. (2009).

Google Scholar

[5] Paulo Davim, J., Reis, P., Lapa, V., & Conceiçao António, C. (2003). Machinability study on polyetheretherketone (PEEK) unreinforced and reinforced (GF30) for applications in structural components. Composite Structures, 62(1), 67-73.

DOI: 10.1016/s0263-8223(03)00085-0

Google Scholar

[6] Mahdi, M., & Zhang, L. (2001). A finite element model for the orthogonal cutting of fiber-reinforced composite materials. Journal of Materials Processing Technology, 113(1-3), 373-377.

DOI: 10.1016/s0924-0136(01)00675-6

Google Scholar

[7] Arola, D., & Ramulu, M. (1997). Orthogonal cutting of fiber-reinforced composites: A finite element analysis. International Journal of Mechanical Sciences, 39(5), 597-613.

DOI: 10.1016/s0020-7403(96)00061-6

Google Scholar

[8] Bhatnagar, N., Ramakrishnan, N., Naik, N. K., & Komanduri, R. (1995). On the machining of fiber reinforced plastic (FRP) composite laminates. International Journal of Machine Tools and Manufacture, 35(5), 701-716.

DOI: 10.1016/0890-6955(95)93039-9

Google Scholar

[9] Wern, C. W., Ramulu, M., & Shukla, A. (1996). Investigation of stresses in the orthogonal cutting of fiber-reinforced plastics. Experimental Mechanics, 36(1), 33-41.

DOI: 10.1007/bf02328695

Google Scholar

[10] Zhang, L. (1999). On the separation criteria in the simulation of orthogonal metal cutting using the finite element method. Journal of Materials Processing Technology, 89-90, 273-278.

DOI: 10.1016/s0924-0136(99)00023-0

Google Scholar

[11] O. Ghouati, J.C. Gelin, Identification of material parameters directly from metal forming processes, J. Material Processing Technology, 80-81, (1998) 560-564.

DOI: 10.1016/s0924-0136(98)00159-9

Google Scholar

[12] O. Ghouati, J.C. Gelin, A finite element based identification method for complex material behaviours, Computational Materials Science, 21, (2001) 57-68.

DOI: 10.1016/s0927-0256(00)00215-9

Google Scholar

[13] A. Maurel, M. Fontaine, S. Thibaud, G. Michel, J.C. Gelin, Experiments and FEM Simulations of Milling Performed to Identify Material Parameters, Int J Mater Form (2008) 1: 1435-1438.

DOI: 10.1007/s12289-008-0106-0

Google Scholar

[14] Khaimovich, А. Balaykin, A. Kondratiev, A. (2014).

Google Scholar

[15] Khaimovich, А. Balaykin, A. (2014).

Google Scholar

[16] Kudo, H. (1959) An Upper Bound Approach to Plane Strain Forging and Extrusion, Int J of Mech. Sciences (Parts I and II), p.229.

Google Scholar

[17] Johnson, G.R.; Cook, W.H. (1983), A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics: 541–547.

Google Scholar

[18] Khaimovich, А. Balaykin, A. (2014) Analysis of plastic properties of titanium alloys under severe deformation conditions in machining, International Journal of Engineering and Technology, 6(5): 2184-2190.

Google Scholar

[19] Khaimovich, А. Balaykin, A. Galkina, N. (2015) Study of Rheological Properties of Materials at the Blade Processing on Example of Milling Nickel-Chromium Alloy 10H11N23T3 MR VD, Applied Mechanics and Materials, vol. 756 (2015) pp.120-125.

DOI: 10.4028/www.scientific.net/amm.756.120

Google Scholar