[1]
H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (1940) 284-304.
DOI: 10.1016/s0031-8914(40)90098-2
Google Scholar
[2]
W.F. Brown Jr, Thermal fluctuations of a single-domain particle, Phys. Rev. 130 (1963) 1677-1686.
DOI: 10.1103/physrev.130.1677
Google Scholar
[3]
R. Gilmore, Catastrophe time scales and conventions, Phys. Rev. A, 20 (1979) 2510-2515.
DOI: 10.1103/physreva.20.2510
Google Scholar
[4]
B. McNamara and K. Wieseneld, Theory of stochastic resonance, Phys. Rev A, 39 (1989) 4854-4869.
Google Scholar
[5]
J. Burki, C.A. Stafford, D.L. Stein, Theory of metastability in simple metal nanowires, Phys. Rev. Lett., 95 (2005) 090601.
Google Scholar
[6]
R.A. Neher, W. Mobius, E. Frey, U. Gerland, Optimal Flexibility for Conformational Transitions in Macromolecules, Phys. Rev. Lett., 99 (2007) 178101.
DOI: 10.1103/physrevlett.99.178101
Google Scholar
[7]
P.L. Garcia-Muller, F. Borondo, R. Hernandez, Solvent-Induced Acceleration of the Rate of Activation of a Molecular Reaction, Phys. Rev. Lett., 101 (2008) 178302.
Google Scholar
[8]
N.E. Aktaev, I.I. Gontchar, A modified Kramers approach to describing the fission of excited atomic nuclei, Bulletin of the Russian Academy of Sciences: Physics, 75 (2011) 994-997.
DOI: 10.3103/s1062873811070045
Google Scholar
[9]
C. Broeck, N. Kumar, K. Lindenberg, Efficiency of Isothermal Molecular Machines at Maximum Power, Phys. Rev. Lett., 108 (2012) 210602.
DOI: 10.1103/physrevlett.108.210602
Google Scholar
[10]
I.I. Gontchar, M.V. Chushnyakova, N.E. Aktaev et. al., Disentangling effects of potential shape in the fission rate of heated nuclei, Phys. Rev. C, 82 (2010) 064606.
DOI: 10.1103/physrevc.82.064606
Google Scholar
[11]
D.J. Bicout, A.M. Berezhkovskii, A. Szabo, G.H. Weiss, Kramers-Like Turnover in Activationless Rate Processes, 83 (1999) 1279-1282.
DOI: 10.1103/physrevlett.83.1279
Google Scholar
[12]
E. Pollak, Variational transition state theory for activated rate processes, Jour. Chem. Phys., 93 (1990) 1116-1124.
DOI: 10.1063/1.459175
Google Scholar
[13]
E.G. Pavlova, N.E. Aktaev, I.I. Gontchar, Modified Kramers formulas for the decay rate in agreement with dynamical modeling, Physica A 391 (2012) 6084-6100.
DOI: 10.1016/j.physa.2012.06.064
Google Scholar
[14]
I.I. Gontchar, R.A. Kuzyakin, E.G. Pavlova, N.E. Aktaev, The nuclear fission process as Brownian motion: modifying the Kramers fission rates, Journal of Physics: Conference Series 381 (2012) 012089.
DOI: 10.1088/1742-6596/381/1/012089
Google Scholar
[15]
N.E. Aktaev, Theoretical approach to modelling the low-barrier chemical reactions initiated by pulsed electron beam, Jour. Phys: Conf Series, 552 (2014) 012033.
DOI: 10.1088/1742-6596/552/1/012033
Google Scholar
[16]
P. Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers, Reviews of Modern Physics 62 (1990) 251-341.
DOI: 10.1103/revmodphys.62.251
Google Scholar
[17]
E.G. Pavlova, N.E. Aktaev, I.I. Gontchar, Corrections to Kramers formula for the fission rate of excited nuclei, Bulletin of the Russian Academy of Sciences: Physics, 76 (2012) 1098-1102.
DOI: 10.3103/s1062873812080217
Google Scholar
[18]
I.I. Gontchar, E.G. Pavlova, A.L. Litnevsky, N.E. Aktaev, How much accurate is description of nuclear fission rate by means of Kramer's formula?, 3rd International Conference on Current Problems in Nuclear Physics and Atomic Energy, NPAE 2010 - Proceedings, (2011).
DOI: 10.1088/1742-6596/312/8/082023
Google Scholar