Decay of Low-Barrier Metastable State: Middle Friction

Article Preview

Abstract:

In the framework of the generalized Kramers theory of physical and chemical kinetics the relation for the decay rate of the metastable state is obtained. The peculiarity of the system is the ratio of the potential barrier height to temperature of the system. This ratio is much less than unity. To study the process we introduce the concept of the effective square of the potential barrier. It is shown that in the limiting case the obtained relation becomes the standard formula (Kramers formula) for the decay rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-127

Citation:

Online since:

February 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (1940) 284-304.

DOI: 10.1016/s0031-8914(40)90098-2

Google Scholar

[2] W.F. Brown Jr, Thermal fluctuations of a single-domain particle, Phys. Rev. 130 (1963) 1677-1686.

DOI: 10.1103/physrev.130.1677

Google Scholar

[3] R. Gilmore, Catastrophe time scales and conventions, Phys. Rev. A, 20 (1979) 2510-2515.

DOI: 10.1103/physreva.20.2510

Google Scholar

[4] B. McNamara and K. Wieseneld, Theory of stochastic resonance, Phys. Rev A, 39 (1989) 4854-4869.

Google Scholar

[5] J. Burki, C.A. Stafford, D.L. Stein, Theory of metastability in simple metal nanowires, Phys. Rev. Lett., 95 (2005) 090601.

Google Scholar

[6] R.A. Neher, W. Mobius, E. Frey, U. Gerland, Optimal Flexibility for Conformational Transitions in Macromolecules, Phys. Rev. Lett., 99 (2007) 178101.

DOI: 10.1103/physrevlett.99.178101

Google Scholar

[7] P.L. Garcia-Muller, F. Borondo, R. Hernandez, Solvent-Induced Acceleration of the Rate of Activation of a Molecular Reaction, Phys. Rev. Lett., 101 (2008) 178302.

Google Scholar

[8] N.E. Aktaev, I.I. Gontchar, A modified Kramers approach to describing the fission of excited atomic nuclei, Bulletin of the Russian Academy of Sciences: Physics, 75 (2011) 994-997.

DOI: 10.3103/s1062873811070045

Google Scholar

[9] C. Broeck, N. Kumar, K. Lindenberg, Efficiency of Isothermal Molecular Machines at Maximum Power, Phys. Rev. Lett., 108 (2012) 210602.

DOI: 10.1103/physrevlett.108.210602

Google Scholar

[10] I.I. Gontchar, M.V. Chushnyakova, N.E. Aktaev et. al., Disentangling effects of potential shape in the fission rate of heated nuclei, Phys. Rev. C, 82 (2010) 064606.

DOI: 10.1103/physrevc.82.064606

Google Scholar

[11] D.J. Bicout, A.M. Berezhkovskii, A. Szabo, G.H. Weiss, Kramers-Like Turnover in Activationless Rate Processes, 83 (1999) 1279-1282.

DOI: 10.1103/physrevlett.83.1279

Google Scholar

[12] E. Pollak, Variational transition state theory for activated rate processes, Jour. Chem. Phys., 93 (1990) 1116-1124.

DOI: 10.1063/1.459175

Google Scholar

[13] E.G. Pavlova, N.E. Aktaev, I.I. Gontchar, Modified Kramers formulas for the decay rate in agreement with dynamical modeling, Physica A 391 (2012) 6084-6100.

DOI: 10.1016/j.physa.2012.06.064

Google Scholar

[14] I.I. Gontchar, R.A. Kuzyakin, E.G. Pavlova, N.E. Aktaev, The nuclear fission process as Brownian motion: modifying the Kramers fission rates, Journal of Physics: Conference Series 381 (2012) 012089.

DOI: 10.1088/1742-6596/381/1/012089

Google Scholar

[15] N.E. Aktaev, Theoretical approach to modelling the low-barrier chemical reactions initiated by pulsed electron beam, Jour. Phys: Conf Series, 552 (2014) 012033.

DOI: 10.1088/1742-6596/552/1/012033

Google Scholar

[16] P. Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers, Reviews of Modern Physics 62 (1990) 251-341.

DOI: 10.1103/revmodphys.62.251

Google Scholar

[17] E.G. Pavlova, N.E. Aktaev, I.I. Gontchar, Corrections to Kramers formula for the fission rate of excited nuclei, Bulletin of the Russian Academy of Sciences: Physics, 76 (2012) 1098-1102.

DOI: 10.3103/s1062873812080217

Google Scholar

[18] I.I. Gontchar, E.G. Pavlova, A.L. Litnevsky, N.E. Aktaev, How much accurate is description of nuclear fission rate by means of Kramer's formula?, 3rd International Conference on Current Problems in Nuclear Physics and Atomic Energy, NPAE 2010 - Proceedings, (2011).

DOI: 10.1088/1742-6596/312/8/082023

Google Scholar