Corrections to Kramers Formula Describing the Decay Rate of a Metastable State

Article Preview

Abstract:

The work investigates the accuracy of the Kramers approximate formula describing the decay rate of a metastable state. The study was performed by comparing the rate obtained through Kramers formula with the quasistationary rate derived by dynamical modeling that was performed by solving the Langevin equation. We have demonstrated that the non-correlation between Kramers rate and dynamical rate reached 15%, while a better correlation was expected. The study allowed us to generate corrections to Kramers formula by accounting for the higher derivatives of the potential. The rate obtained by the corrected formula exhibits the correlation with the dynamic rate of better than 1%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-132

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (1940) 284-304.

DOI: 10.1016/s0031-8914(40)90098-2

Google Scholar

[2] W.F. Brown Jr, Thermal fluctuations of a single-domain particle, Phys. Rev. 130 (1963) 1677-1686.

DOI: 10.1103/physrev.130.1677

Google Scholar

[3] V.M. Strutinsky, The fission width of excited nuclei, Phys. Lett. B, 47 (1973) 121-123.

Google Scholar

[4] J. Burki, C.A. Stafford, D.L. Stein, Theory of metastability in simple metal nanowires, Phys. Rev. Lett., 95 (2005) 090601.

Google Scholar

[5] H. Hofmann, F.A. Ivanyuk, Mean first passage time for nuclear fission and the emission of light particles, Phys. Rev. Lett. 90 (2003) 132701.

DOI: 10.1103/physrevlett.90.132701

Google Scholar

[6] С. Schmitt, P.N. Nadtochy, A. Heinz, B. Jurado, A. Kelic, K. -H. Schmidt, First experiment on fission transient in fissile spherical nuclei produced by fragmentation of radioactive beams, Phys. Rev. Lett. 99(2007) 042701.

DOI: 10.1103/physrevlett.99.042701

Google Scholar

[7] N.E. Aktaev, I.I. Gontchar, A modified Kramers approach to describing the fission of excited atomic nuclei, Bulletin of the Russian Academy of Sciences: Physics, 75 (2011) 994-997.

DOI: 10.3103/s1062873811070045

Google Scholar

[8] D.J. Bicout, A.M. Berezhkovskii, A. Szabo, G.H. Weiss, Kramers-Like Turnover in Activationless Rate Processes, 83 (1999) 1279-1282.

DOI: 10.1103/physrevlett.83.1279

Google Scholar

[9] E. Pollak, Variational transition state theory for activated rate processes, Jour. Chem. Phys., 93 (1990) 1116-1124.

DOI: 10.1063/1.459175

Google Scholar

[10] E.G. Pavlova, N.E. Aktaev, I.I. Gontchar, Modified Kramers formulas for the decay rate in agreement with dynamical modeling, Physica A 391 (2012) 6084-6100.

DOI: 10.1016/j.physa.2012.06.064

Google Scholar

[11] I.I. Gontchar, R.A. Kuzyakin, E.G. Pavlova, N.E. Aktaev, The nuclear fission process as Brownian motion: modifying the Kramers fission rates, Journal of Physics: Conference Series 381 (2012) 012089.

DOI: 10.1088/1742-6596/381/1/012089

Google Scholar

[12] I.I. Gontchar, M.V. Chushnyakova, N.E. Aktaev et. al., Disentangling effects of potential shape in the fission rate of heated nuclei, Phys. Rev. C, 82 (2010) 064606.

DOI: 10.1103/physrevc.82.064606

Google Scholar

[13] P. Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers, Reviews of Modern Physics 62 (1990) 251-341.

DOI: 10.1103/revmodphys.62.251

Google Scholar

[14] E.G. Pavlova, N.E. Aktaev, I.I. Gontchar, Corrections to Kramers formula for the fission rate of excited nuclei, Bulletin of the Russian Academy of Sciences: Physics, 76 (2012) 1098-1102.

DOI: 10.3103/s1062873812080217

Google Scholar

[15] I.I. Gontchar, E.G. Pavlova, A.L. Litnevsky, N.E. Aktaev, How much accurate is description of nuclear fission rate by means of Kramer's formula?, 3rd International Conference on Current Problems in Nuclear Physics and Atomic Energy, NPAE 2010 - Proceedings, (2011).

DOI: 10.1088/1742-6596/312/8/082023

Google Scholar

[16] O. Edholm, O. Leimar, The accuracy of Kramers' theory of chemical kinetics, Physica A. 98 (1979) 313-324.

DOI: 10.1016/0378-4371(79)90182-1

Google Scholar

[17] P. Fröbrich and G. –R. Tillack, Path-integral derivation for the rate of stationary diffusion over a multidimensional barrier, Nuclear Physics A. 540 (1991) 353 – 364.

DOI: 10.1016/0375-9474(92)90209-3

Google Scholar

[18] P. Fröbrich and A. Ecker, Langevin description of fission of hot metallic clusters, Euro Physics Journal D. 3 (1998) 245 – 256.

DOI: 10.1007/s100530050171

Google Scholar

[19] J. -D. Bao and Y. Jia, Determination of fission rate by mean last passage time, Physical Review C. 69 (2004) 027602.

DOI: 10.1103/physrevc.69.027602

Google Scholar

[20] J. -D. Bao and Y. Jia, Last passage time statistics for barrier-crossing processes, Journal of Statistical Physics. 123№ 4 (2006) 861 – 869.

DOI: 10.1007/s10955-006-9082-2

Google Scholar

[21] B. Yilmaz, S. Ayik, Y. Abe and D. Boilley, Non-Markovian diffusion over a parabolic potential barrier: influence of the friction-memory function, Physical Review E. 77 (2008) 011121.

DOI: 10.1103/physreve.77.011121

Google Scholar

[22] P. Fröbrich and G. –R. Tillack, Path-integral derivation for the rate of stationary diffusion over a multidimensional barrier, Nuclear Physics A. 540 (1991) 353 – 364.

DOI: 10.1016/0375-9474(92)90209-3

Google Scholar

[23] D. Boilley and Y. Lallouet, Non-markovian diffusion over a saddle with a generalized Langevin equation, Journal of Statistical Physics. 125 № 2 (2006) 477 – 493.

DOI: 10.1007/s10955-006-9197-5

Google Scholar

[24] P.N. Nadtochy, A. Kelic and K. -H. Schmidt, Fission rate in multi-dimensional Langevin calculation, Physical Review C. 75 (2007) 064614.

Google Scholar