[1]
P. Košťál, A. Mudriková, Laboratory of Flexible Manufacturing System, Advanced Materials Research, 429 (2012) 31-36 ISSN 1022-6680.
DOI: 10.4028/www.scientific.net/amr.429.31
Google Scholar
[2]
I. Kuric, S. Legutko, Chosen Aspects of Modern CAPP Systems, Computational Methods in Science and Technology 7 (2) (2001) 65-74.
DOI: 10.12921/cmst.2001.07.02.65-74
Google Scholar
[3]
M. Rusko, R. Kralikova, Implementation of environmental oriented monitoring in the manufacturing company. Advanced Materials Research, vols. 816-817 (2013) 1225-1230.
DOI: 10.4028/www.scientific.net/amr.816-817.1225
Google Scholar
[4]
N. Ungureanu, M. Ungureanu, A. Cotetiu, B. Barisic, S. Grozav, Principles of the maintenance management, Scientific Bulletin, Series C, Volume XXIV, Fascicle: Mechanics, Tribology, Machine Manufacturing Technology, (2010) 69-72 ISSN 1224-3264.
Google Scholar
[5]
S.A. Haba, G. Oancea, Digital manufacturing of air-cooled single cylinder engine block. Int. J. Adv. Manuf. Technol., DOI 10. 1007/s00170-015-7038-x.
DOI: 10.1007/s00170-015-7038-x
Google Scholar
[6]
J. Kundrak, K. Gyani, V. Bana, Roughness of ground and hard-turned surfaces on the basis of 3D parameters. Int. J. of Advanced Manuf. Techn., 38 (1-2) (2008) 110-119.
DOI: 10.1007/s00170-007-1086-9
Google Scholar
[7]
C. Felho, J. Kundrak, Characterization of topography of cut surface based on theoretical roughness indexes, Key Eng. Mater. 496 (2012) 194-199.
DOI: 10.4028/www.scientific.net/kem.496.194
Google Scholar
[8]
G. Varga, F. Szigeti, G. Dezső, 3D surface topography analysis of environmentally consciously drilled holes, Int. J. of Engineering, XI. 3. (2013) 99-104 ISSN 1584-2673.
Google Scholar
[9]
M. Novák, Surfaces with High Precision of Roughness after Grinding. Manufacturing Technology, 12 (2012) 66-70.
Google Scholar
[10]
G. Varga, Effects of Technological Parameters on the Surface Texture of Burnished Surfaces, Key Engineering Materials, Precision Machining VII, 581 (2014) 403-408, ISSN 1013-9826.
DOI: 10.4028/www.scientific.net/kem.581.403
Google Scholar
[11]
J. Kundrák, Z. Gácsi, K. Gyáni, V. Bana, G. Tomolya, X-ray diffraction investigation of white layer development in hard-turned surfaces. Int. J. of Adv. Manuf. Techn., 62 (5-8), (2012) 457-469.
DOI: 10.1007/s00170-011-3811-7
Google Scholar
[12]
J. Kundrák, A.G. Mamalis, A. Markopoulos, Finishing of hardened boreholes: Grinding or hard cutting? Materials and Manufacturing Processes, 19 (6) (2004) 979-993.
DOI: 10.1081/amp-200034480
Google Scholar
[13]
G. Dezső, J. Herman, F. Szigeti, Two dimensional physical modelling of the cutting wedge. Int. J. of Engineering, X. 1. (2012) 155-158 ISSN 1584-2665.
Google Scholar
[14]
I. Sztankovics, J Kundrák Effect of the Inclination Angle on the Defining Parameters of Chip Removal in Rotational Turning, Manufacturing Technology, ISSN 1213–2489 (2014) 97-104.
DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/1/97
Google Scholar
[15]
J. Beňo, I. Maňková, M. Vrabeľ, D. Kottfer, Roughness Measurement Methodology for Selection of Tool Inserts, Measurement, Vol. 46, Iss. 1, January (2013), 582–592- ISSN 0263-2241.
DOI: 10.1016/j.measurement.2012.08.017
Google Scholar
[16]
P. Kovac, D. Rodic, V. Pucovsky, B. Savkovic, M. Gostimirovic, Application of fuzzy logic and regression analysis for modelling surface roughness in face milling. J Intelligent Manufacturing, 24, (2013) 755–762.
DOI: 10.1007/s10845-012-0623-z
Google Scholar
[17]
W. Zebala, B. Slodki, G. Struzikiewicz, Productivity and Reliability Improvement in Turning INCONEL 718 Alloy - Case Study. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 15 Iss. 4 (2013) 421-426.
Google Scholar
[18]
T. Szalay, M. Czampa, S. Markos, B. Farkas, Investigation of Machinability of Iron Based Metal Matrix Composite (MMC) Powder Metallurgy Parts, 2nd Int. Advances in Applied Physics and Materials Science Congress. AIP Conf. Proc., Vol. 1476, Iss. 1, (2012).
DOI: 10.1063/1.4751615
Google Scholar
[19]
B. Palásti-Kovács, S. Sipos, I. Szalóki, Experimental research of cutting performance and quality abilities of modern drilling tools, Key Engineering Mat., 581 (2014) 32-37 ISSN 1013-9826.
DOI: 10.4028/www.scientific.net/kem.581.32
Google Scholar
[20]
A.A. Vereschaka, Improvement of by modifying its surface properties by application of wear-resistant complexes. Advanced Materials Research, 712-715 June. (2013) 347-351.
DOI: 10.4028/www.scientific.net/amr.712-715.347
Google Scholar
[21]
B. Mikó, J. Beno, I. Mankova, Experimental Verification of Cusp Heights when 3D Milling Rounded Surfaces, Acta Polytechnica Hungarica, 9, No. 6 (2012) 101-116.
DOI: 10.12700/aph.9.6.2012.6.7
Google Scholar
[22]
I. Biró, M. Czampa, T. Szalay: Experimental model for the main cutting force in face milling of a high strength structural steel, Periodica Polytechnica, Mech. Eng. 59, Iss. 1 (2015) 16-22 ISSN: 0324-6051.
DOI: 10.3311/ppme.7516
Google Scholar
[23]
M. Deepak, T. Ravindra, A review on ball burnishing process. International Journal of Scientific and Research Publications, 3. Iss. 4, April, (2013) 1-8 ISSN 2250-3153.
Google Scholar
[24]
M.H. El-Axir, O.M. Othman, A.M. Abodiena, Improvements in Out-of-roundness and Microhardness of Inner Surfaces by Internal Ball Burnishing Process, J Mat Proc. Tech. 196 Iss. 1-3, (2008) 120–128.
DOI: 10.1016/j.jmatprotec.2007.05.028
Google Scholar
[25]
A.M. Hassan, A.M.S. Momani, Further improvements in some properties of shot peened components using the burnishing process, Int. J. Mach. Tools Manuf., 40, 12, (2000) 1775–1786.
DOI: 10.1016/s0890-6955(00)00018-3
Google Scholar
[26]
H, Luo, J. Liu, L. Wang, Q. Zhong, Investigation of the Burnishing Force during the Burnishing Process with a Cylindrical Surfaced Tool, P I Mech Eng B J Eng Manuf 220 (2006) 893-904.
DOI: 10.1243/09544054b07604
Google Scholar
[27]
E. Brinksmeier, M. Garbrecht, D. Meyer, Cold surface hardening. Manufacturing Technology, CIRP Annals, 57 1, (2008) 541-544.
DOI: 10.1016/j.cirp.2008.03.100
Google Scholar
[28]
H.Y. Luo, J.Y. Liu, L.J. Wang, Q.P. Zhong, Investigation of the burnishing force during the burnishing process with a cylindrical surfaced tool. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 220 (2006) 893–904.
DOI: 10.1243/09544054b07604
Google Scholar
[29]
Information on http: /docslide. us/documents/centrifugal-compressors-theory. html.
Google Scholar
[30]
M.N. Durakbasa, P.H. Osanna, G. Bas, P. Demircioglu, M. Cakmakci, A. Hornikova,
Novel Developments in Dimensional Nanometrology in the Context of Geometrical Product Specifications and Verification (GPS).
JAMRIS – J. of Aut., Mobile Robotics & Int. Syst., 6, 02 (2012).
Google Scholar
[31]
G. Bas, M.N. Durakbasa, I. Manková, J. Beno, Application of Nanometrology for Assessing the Machining Tool Geometry and Analysis of the Micro/Nano Structure of the End Milling Tool Surfaces, Proc. 9th Int. Conf. on Measurement, J. Manka, M. Tysler, M. Witkowsky, i. Frollo (Hrg. ) VEDA Publ. House of the Slovak Academy of Scienc. 1 (2013).
Google Scholar
[32]
M.N. Durakbasa, G. Bas, J.M. Bauer, G. Poszvek, Trends in precision manufacturing based on intelligent design and advanced metrology, Key Eng. Mater., 581 (2014) 417-422.
DOI: 10.4028/www.scientific.net/kem.581.417
Google Scholar
[33]
M.N. Durakbasa, A. Akdogan, S. Vanli, A. Gunay Bulutsuz, Optimization of end milling parameters and determination of the effects of edge profile for high surface quality of AISI H13 steel by using precise and fast measurements. Measurement, 1, 68 (2015).
DOI: 10.1016/j.measurement.2015.02.042
Google Scholar
[34]
Á. Drégelyi-Kiss, R. Horváth, B. Mikó, Design of experiments (DoE) in investigation of cutting technologies, Development in Machining Technology, Vol. 3. Ed.: W. Zebala, I. Manková, Cracow University of Technology (2013) 20-34.
Google Scholar
[35]
G. Taguchi, System of experiment design, 1. Experimental design, UNIPUB, Kraus International Publications, White Plains, New York, (1987) ISBN 0-527-91621-8.
Google Scholar
[36]
L. Fridrik, Chosen chapters from the topics of experimental design of production engineering, Műszaki Könyvkiadó, Budapest, 1987 (In Hungarian).
Google Scholar
[37]
G. Varga, B. Sovilj, I. Pasztor, Experimental analysis of sliding burnishing, Academic Journal of manufacturing engineering, 11, Iss. 3 (2013) 06-11 ISSN: 1583-7904.
Google Scholar
[38]
V. Ferencsik, Examination of hardness and shape correctness of hardened and diamond burnished workpiece's surfaces, National Scientific Students' Associations Conference, University of Miskolc (2015).
Google Scholar