The Influence of Tool Stiffness on the Dimensional Accuracy in Titanium Alloy Milling

Article Preview

Abstract:

The paper presents the simulation model of down milling process of titanium alloy (Ti6Al4V) with a tool made of sintered carbides, considering a tool stiffness. A finite element method, applied for numerical computations was experimentally verified with the help of force dynamometer, thermo-vision and high-speed video cameras. Differences between measured and simulated values were less than 22 % for cutting forces and about 8% for maximum cutting zone temperature and about 5% for tool deflection in the active part of the cutting edge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-113

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Salgado, L.N. Lopez de Lacalle, A. Lamikiz, J. Munoa, J.A. Sanchez, Evaluation of the stiffness chain on the deflection of end-mills under cutting forces, International Journal of Machine Tools & Manufacture 45 (2005) 727–739.

DOI: 10.1016/j.ijmachtools.2004.08.023

Google Scholar

[2] B.C. Shin, S.J. Ha, M.W. Cho, T.I. Seo, G.S. Yoon, Y.M. Heo, Indirect cutting force measurement in the micro end-milling process based on frequency analysis of sensor signals, The Journal of Mechanical Science and Technology 24, 1 (2010) 165-168.

DOI: 10.1007/s12206-009-1121-x

Google Scholar

[3] W. Zębala, Tool stiffness influence on the chosen physical parameters of the milling process, Bulletin of the Polish Academy of Science -Technical Sciences 60, 3 (2012) 597-604, DOI: 10. 2478/v10175-012-0071-0.

DOI: 10.2478/v10175-012-0071-0

Google Scholar

[4] C.G. Sim, M.Y. Yang, The prediction of the cutting force in ball end milling with a flexible cutter, International Journal of Machine Tools & Manufacture 33, 2 (1993) 267–284.

DOI: 10.1016/0890-6955(93)90079-a

Google Scholar

[5] V.S. Rao, P.V.M. Rao, Tool deflection compensation in peripheral milling of curved geometries, International Journal of Machine Tools & Manufacture 46 (2006) 2036–(2043).

DOI: 10.1016/j.ijmachtools.2006.01.004

Google Scholar

[6] B. Mikó, J. Beňo, Effect of the Working Diameter to the Surface Quality in Free-form Surface Milling, Key Engineering Materials 581 (2014) 372-377.

DOI: 10.4028/www.scientific.net/kem.581.372

Google Scholar

[7] A. Larue, B. Anselmetti, Deviation of a machined surface in flank milling, International Journal of Machine Tools & Manufacture 43 (2003) 129–138.

DOI: 10.1016/s0890-6955(02)00189-x

Google Scholar

[8] E.J.A. Armarego, N.P. Deshpande, Computerized end-milling force predictions with cutting models allowing for eccentricity and cutter deflections, Annals of the CIRP 40 (1991) 25–29.

DOI: 10.1016/s0007-8506(07)61926-x

Google Scholar

[9] B.W. Ikua, H. Tanaka, F. Obata, S. Sakamoto, K. Takeyasu, I. Tatsuo, Prediction of cutting forces and machining error in ball end milling of curved surfaces—2 Experimental verification, precision engineering, Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002).

DOI: 10.1016/s0141-6359(01)00101-5

Google Scholar

[10] G. Stépán, Retarded dynamical systems: Stability and characteristic functions. Longman, Harlow, UK (1989).

Google Scholar

[11] A.C. Lee, C.S. Liu, S.T. Chiang, Analysis of chatter vibration in a cutter-workpiece system, International Journal of Machine Tools & Manufacture 31, 2 (1991) 221–234.

DOI: 10.1016/0890-6955(91)90006-o

Google Scholar

[12] R. Rusinek, J. Warmiński, K. Szabelk, Drgania nieliniowe w procesie skrawania toczeniem. IZT Sp. z o. o., Lublin, Poland (2006).

Google Scholar

[13] W. Zębala, B. Słodki, G. Struzikiewicz, Productivity and reliability improvement in turning inconel 718 alloy - case study, Eksploatacja i Niezawodnosc-Maintenance and Reliability 15, 4 (2013) 421-426.

Google Scholar

[14] W. Zębala, R. Kowalczyk, Cutting Data Influence on Cutting Forces and Surface Finish During Sintered Carbide Turning, Key Engineering Materials   581 (2014)  148-153.

DOI: 10.4028/www.scientific.net/kem.581.148

Google Scholar

[15] J. Beňo, I. Maňková, M. Vrabeľ, D. Kottfer, Roughness measurement methodology for selection of tool inserts, Measurement 46, 1 (2013) 582-592.

DOI: 10.1016/j.measurement.2012.08.017

Google Scholar

[16] G. Struzikiewicz, T. Otko, Dependence of shape deviations and surface roughness in the hardened steel turning, Key Engineering Materials 581 (2014) 443-448.

DOI: 10.4028/www.scientific.net/kem.581.443

Google Scholar

[17] R.W. Maruda, S. Legutko, G.M. Krolczyk, P. Raos, Influence of cooling conditions on the machining process under MQCL and MQL conditions, Tehnički Vjesnik – Technical Gazette 22, 4 (2015) 965-970.

DOI: 10.17559/tv-20140919143415

Google Scholar

[18] G. Varga, J. Kundrák, Effect of environmentally conscious machining on machined surface quality, Applied Mechanics and Materials 309 (2013) 35-42.

DOI: 10.4028/www.scientific.net/amm.309.35

Google Scholar

[19] J. Kundrák, G. Varga, Possibility of reducing environmental load in hard machining, Key Engineering Materials 496 (2012) 205-210.

DOI: 10.4028/www.scientific.net/kem.496.205

Google Scholar

[20] R.W. Maruda, E. Feldshtein, S. Legutko, G.M. Krolczyk, Analysis of contact phenomena and heat exchange in the machining zone under Minimum Quantity Cooling Lubrication conditions, Arabian Journal for Science and Engineering, (2015).

DOI: 10.1007/s13369-015-1726-6

Google Scholar

[21] User's Manual of AdvantEdge v5. 6 machining simulation software, Minneapolis, MN (2010).

Google Scholar

[22] R. Boyer, G. Welsch, E.W. Collings, Material properties handbook: titanium alloys. ASM International, Materials Park, OH, USA (1994).

Google Scholar

[23] A. l. Zkeri, J. Rech, T. Altan, H. Hamdi, F. Valiorgue, Optimization of the cutting edge geometry of coated carbide tools in dry turning of steels using a finite element analysis, Machining Science and Technology 13 (2009) 36–51.

DOI: 10.1080/10910340902776051

Google Scholar