A Study on the Grindability of Engineering Plastics and Metals

Article Preview

Abstract:

In this study, the surface grinding was performed at different feed rates and depth of cuts. Grindability of engineering thermoplastics and metals was evaluated. Further, important process parameters influencing surface quality were determined using analysis of variance (ANOVA). Experimental results compared two significantly different groups of materials in order to emphasize common variables. Finally, further research directions were presented to seek for functional relation between process parameters and grindability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Bílek, J. Javořík, J. Čop, Comparative machinability and surface integrity in grinding of titanium, Int. J. Mech., 9 (2015), 43–52.

Google Scholar

[2] R. Čep, A. Janásek, J. Petrů, M. Sadílek, P. Mohyla, J. Valíček, M. Harničárová, A. Czán, Surface Roughness after Machining and Influence of Feed Rate on Process, Key Eng. Mater., 581 (2013), 341–347.

DOI: 10.4028/www.scientific.net/kem.581.341

Google Scholar

[3] F. Holesovsky, M. Novak, F. Chinesta, Y. Chastel, M. El Mansori, Grinding and its influence to ground surface durability, in International Conference on Advances in Materials and Processing Technologies (AMPT2010), 2011, p.973–978.

DOI: 10.1063/1.3552579

Google Scholar

[4] Y. L. Hou, C. H. Li, G. Y. Liu, Investigation into High-Speed/Super-High Speed Grinding, in Advanced Materials Research, 2011, p.4108–4111.

DOI: 10.4028/www.scientific.net/amr.189-193.4108

Google Scholar

[5] I. Lukovics, J. Čop, L. Fojtl, P. Lukovics, V. Pata, Prediction of surface product quality and operation reliability of grinding machines, Manuf. Technol., 14 (2014), 213–217.

DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/2/213

Google Scholar

[6] S. Malkin, C. Guo, Thermal Analysis of Grinding, CIRP Ann. - Manuf. Technol., 56 (2007), 760–782.

DOI: 10.1016/j.cirp.2007.10.005

Google Scholar

[7] L. Novakova-Marcincinova, J. Novak-Marcincin, M. Janak, Precision Manufacturing Process of Parts Realized by FDM Rapid Prototyping, Key Eng. Mater., 581 (2013), 292–297.

DOI: 10.4028/www.scientific.net/kem.581.292

Google Scholar

[8] J. F. G. Oliveira, E. J. Silva, C. Guo, and F. Hashimoto, Industrial challenges in grinding, CIRP Ann. - Manuf. Technol., 58 (2009), 663–680.

DOI: 10.1016/j.cirp.2009.09.006

Google Scholar

[9] W. B. Rowe, Principles of Modern Grinding Technology, vol. 11. Elsevier Science, (2013).

Google Scholar

[10] A. Vajdová, A. Micietová, M. Neslušan, and K. Kolarik, Analysis of surface integrity of parts after non conventional methods of machining, Manuf. Technol., 14 (2014), 470–474.

DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/3/470

Google Scholar

[11] M. Bachratý, M. Tolnay, M. Králik, Hodnotenie kvality reznych kvapalin energetickou bilanciou, in Mezinarodni konference vyrobnich technologii pri prilezitosti 50. vyroci zalozeni Katedry obrabeni a montaze Fakulty strojni VSB-TU Ostrava, Ostrava, (2014).

Google Scholar

[12] Information on http: /www. plasticseurope. org.

Google Scholar