Dynamic Programming Approach in the Optimization of Tool Life in Turning Process of Duplex Stainless Steel DSS

Article Preview

Abstract:

The paper presents the application of dynamic programming for optimization of cutting parameters of Duplex Stainless Steels (DSS). In this work, modified Dijkstra's optimization algorithm is used in order to obtain the optimal values of the technological cutting parameters with coated carbide tool point. ANOVA analysis was performed to determine the significance of machining parameters. The results at optimum cutting condition are predicted using estimated values. The study was performed within a production facility during the machining of electric motor parts and deep-well pumps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Krolczyk, S. Legutko, Investigations Into Surface Integrity in the Turning Process of Duplex Stainless Steel, Transactions of FAMENA. 38, 2 (2014) 77-82.

Google Scholar

[2] G. Krolczyk, S. Legutko, P. Nieslony, M. Gajek, Study of the surface integrity microhardness of austenitic stainless steel after turning, Tehnički Vjesnik - Technical Gazette. 21, 6 (2014) 1307-1311.

Google Scholar

[3] H. Iancau, P. Bere, M. Borzan, L. Hancu, A. Crai, The influence of reinforced materials and manufacturing procedures on the mechanical characteristics of polymeric composite materials, Materiale Plastice. 45, 3 (2008) 251-256.

Google Scholar

[4] A. Popescu, L. Hancu, P. Bere, Research concerning the optimum extrusion temperature for reinforced polyamide, Applied Mechanics and Materials. 371 (2013) 394-398.

DOI: 10.4028/www.scientific.net/amm.371.394

Google Scholar

[5] E. E. Feldshtein, L. N. Dyachkova, On the properties and tribological behaviors of P/M iron based composites reinforced with ultrafine particulates, Composites Part B: Engineering. 58 (2014) 16-24.

DOI: 10.1016/j.compositesb.2013.10.015

Google Scholar

[6] G.M. Krolczyk, P. Nieslony, J.B. Krolczyk, I. Samardzic, S. Legutko, S. Hloch, S. Barrans, R.W. Maruda, Influence of argon pollution on the weld Surface Morphology, Measurement. 70 (2015) 203 – 213.

DOI: 10.1016/j.measurement.2015.04.001

Google Scholar

[7] A. Glowacz, Diagnostics of direct current machine based on analysis of acoustic signals with the use of symlet wavelet transform and modified classifier based on words, Eksploatacja i Niezawodnosc-Maintenance and Reliability. 16, 4 (2014) 554-558.

Google Scholar

[8] A. Glowacz, A. Glowacz, P. Korohoda, Recognition of monochrome thermal images of synchronous motor with the application of binarization and nearest mean classifier, Archives of Metallurgy and Materials. 59, 1 (2014) 31-34.

DOI: 10.2478/amm-2014-0005

Google Scholar

[9] C. Guarnaccia, J. Quartieri, A. Ruggiero, Acoustical noise study of a factory: Indoor and outdoor simulations integration procedure, International Journal of Mechanics. 8, 1 (2014) 298-306.

Google Scholar

[10] W. Kaplonek, K. Nadolny, The diagnostics of abrasive tools after internal cylindrical grinding of hard-to-cut materials by means of a laser technique using imaging and analysis of scattered light, Arabian Journal for Science and Engineering. 38, 4 (2013).

DOI: 10.1007/s13369-012-0374-3

Google Scholar

[11] M. Duspara, K. Sabo, A. Stoić, Acoustic emission as tool wear monitoring, Tehnički Vjesnik - Technical Gazette, 21 (2014) 1097-1101.

Google Scholar

[12] M. Sadilek, J. Kratochvil, J. Petru, R. Cep, T. Zlamal, D. Stancekova, Cutting tool wear monitoring with the use of impedance layers, Tehnički Vjesnik - Technical Gazette. 21 (2014) 639-644.

Google Scholar

[13] P. Hreha, A. Radvanska, L. Knapcikova, G. Krolczyk, S. Legutko, J. Krolczyk, S. Hloch, P. Monka, Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material, Metrology and Measurement Systems. 22, 2 (2015).

DOI: 10.1515/mms-2015-0024

Google Scholar

[14] S. Krile, D. Perakovic, Load control for overloaded MPLS/DiffServ networks during SLA negotiation, Int. J. Communications, Network and System Sciences. (2009) 422-432.

DOI: 10.4236/ijcns.2009.25047

Google Scholar

[15] K. Arai, R. Mardiyanto, Autonomous control of eye based electric wheel chair with obstacle avoidance and shortest path findings based on Dijkstra algorithm, International Journal of Advanced Computer Science and Applications. 2, 12 (2011) 19-25.

DOI: 10.14569/ijacsa.2011.021203

Google Scholar

[16] M. Xu, Y. Liu, Q. Huang, Y. Zhang, G. Luan, An improved Dijkstra shortest path algorithm for sparse network, in: Applied Mathematics and Computation. 185 (2007) 247-254.

DOI: 10.1016/j.amc.2006.06.094

Google Scholar

[17] O. Nowers, D.J. Duxbury, J. Zhang, B.W. Drinkwater, Novel ray-tracing algorithms in NDE: Application of Dijkstra and A* algorithms to the inspection of an anisotropic weld, NDT&E International. 61 (2014) 58-66.

DOI: 10.1016/j.ndteint.2013.08.002

Google Scholar

[18] D. Berovic, R. Vinter, The application of dynamic programming to optimal inventory control, IEEE Transactions on Automatic Control. 49, 5 (2004) 676-685.

DOI: 10.1109/tac.2004.826719

Google Scholar

[19] Y. Deng, Y. Chen, Y. Zhang, S. Mahadevan, Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment, Applied Soft Computing, 12 (1012) 1231-1237.

DOI: 10.1016/j.asoc.2011.11.011

Google Scholar

[20] E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik. 1 (1959) 269-71.

DOI: 10.1007/bf01386390

Google Scholar