Identification of the Minimal Thickness of Cutting Layer Based on the Acoustic Emission Signal

Article Preview

Abstract:

The chip-forming precision machining process plays a significant role in the mechanical technology. In planning of machining operation, it is crucial to supply the information about the possible minimal value of the machining allowance. For the technologist, when planning the machining operation, it is important to define the minimal thickness of cutting layer correctly. This article presents a new method of describing the start of decohesion process in a workpiece, meaning the determination of the minimal thickness of cutting layer based on the AE signal generated in the cutting zone. The research conducted on the turning of an alloy steel and the analysis of the AE signal strength confirmed that the proposed method opens new possibilities in quickening the identification of the minimal thickness of cutting layer under normal machining conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Kammermeier, Ch. Dey, Zespanung von rost und säuerbeständigen Stählen, Spanende Fertigung, 5. Ausgabe. Prozesse, Innovationen, Werkstoffe, Vulkan Verlag Essen, 2008, pp.424-434.

Google Scholar

[2] F. Klocke, K. Gerschwiler, D. Lung, Effiziente Zerspantechnologien für Nickelbasislegierungen, Spanende Fertigung, 5. Ausgabe. Prozesse, Innovationen, Werkstoffe, , Vulkan Verlag Essen, 2008, pp.372-390.

Google Scholar

[3] B. Pytlak, Multicriteria optimization of cutting parameters of hard turning operation of the hardened 18CrMo4 steel in view of chosen parameters of surface roughness, Advances in Manufacturing Science and Technology, Vol. 37 (2013) 69-78.

DOI: 10.2478/amst-2013-0006

Google Scholar

[4] W. Zębala, J. Gawlik, A. Matras, G. Struzikiewicz, Ł. Ślusarczyk, Research of surface finish titanium alloy turning, Key Engineering Materials Vol. 581 (2014) 409-414.

DOI: 10.4028/www.scientific.net/kem.581.409

Google Scholar

[5] Ł. Nowakowski, E. Miko, Pomiar minimalnej grubości warstwy skrawanej dla procesu frezowania czołowego, Mechanik Volume 86 (2013) 19-22.

DOI: 10.17814/mechanik.2015.8-9.486

Google Scholar

[6] P.H. Brammertz, Die Entstehung der Oberflächenrauheit beim Feindrehen, Industrie Anzeiger Volume 2 (1961) 25-32.

Google Scholar

[7] W. König, Grundlagen der Zerspanbarkeit, Zerspanung der Metalle, Deutsche Gesellschaft für Metallkunde, (1981).

Google Scholar

[8] T. Mikołajczyk, Modeling of Minimal thickness cutting layer influence on surface roughness in turning, Applied Mechanics & Materials Vol. 656, (2014) 262-269.

DOI: 10.4028/www.scientific.net/amm.656.262

Google Scholar

[9] The Acoustic Emission Company, Acoustic Emission Sensors, Specification, Vallen System, 12, (2012).

Google Scholar

[10] Storch B.: Zjawiska przykrawędziowe i monitorowanie chropowatości powierzchni po obróbce jednoostrzowej. Monografie Wydziału Mechanicznego 124, Wydawnictwo Uczelniane Politechniki Koszalińskiej, (2006).

Google Scholar

[11] P. F Dunn, Measurement and data analysis for engineering and science, CRC Press, USA, (2010).

Google Scholar