Utilization of Expanded Perlite as a Source of Silica for Synthesizing Wollastonite by Solid State Reaction

Article Preview

Abstract:

Naturally occurring volcanic glass in the form of the expanded perlite consist of 72.59wt% silica was used as a starting material together with the calcined eggshell in order to explore the wollastonite formation via solid state reaction. The molar mixing ratios of CaO:SiO2 were carried out from 1:0.8 to 1:1.4, calcined in the range of 600 - 1100°C for 2 - 5 hours. The XRD results confirm the formation of wollastonite (CaSiO3) started at 800°C, and increasing of calcination temperature favoured the formation of gelehnite (Ca2Al2SiO7) associated with wollastonite. The morphology characterized by SEM clearly show tiny needle-like shape of primary wollastonite on the surface of agglomerate particles. The CaO:SiO2 ratio of 1:1.4 which calcined at 1100 °C for 2-5 hours was found to be the most appropriate molar ratio in the case of using the calcined eggshell and expanded perlite as starting materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-149

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.L. Virta, Wollastonite. Minerals yearbook. Metal and minerals, Volume I : U.S. Geological Survery. (2000).

Google Scholar

[2] C.G. Bergeron, S.H. Risbud, Introduction to phase equilibria in ceramics. Westerville, Ohio. American ceramics society, (1984).

Google Scholar

[3] W.M.N. Nour, A.A. Mostafa, D.M. Ibrahim, Recycle wastes as precursor for synthesizing wollastonite, Ceram. Int. 34 (2008) 101-105.

DOI: 10.1016/j.ceramint.2006.08.019

Google Scholar

[4] M. Sathiyakumar, F.D. Gnanam, Role of wollastonite additive on density, microstructure and mechanical properties of alumina, Ceram. Int. 29 (2003) 869-873.

DOI: 10.1016/s0272-8842(03)00029-4

Google Scholar

[5] E. Tasçı, The use of synthetic wollastonite in wall tile glazes. J. Aust. Ceram. Soc. 50 (2014) 43-51.

Google Scholar

[6] O. Turkmen, A. Kucuk, S. Akpinar, Effect of wollastonite addition on sintering of hard porcelain, Ceram. Int. 41 (2015) 5505-5512.

DOI: 10.1016/j.ceramint.2014.12.126

Google Scholar

[7] E. Meechoowas, P. Ketboonruang, K. Tapasa, T. Jitwatcharakomol, Improve melting glass efficiency by batch-to melt conversion, Procedia. Eng. 32 (2012) 956-961.

DOI: 10.1016/j.proeng.2012.02.038

Google Scholar

[8] P. Kalla, A. Misra, R. Chandra Gupta, L. Csetenyi, V, Gahlot, A. Arora, Mechanical and durability studies on concrete containing wollastonite-fly ash combination, Constr. Build. Mater. 40 (2013) 1142-1150.

DOI: 10.1016/j.conbuildmat.2012.09.102

Google Scholar

[9] V. Dey, R. kachala, A. Bonakdar, M. Mobasher, Mechanical properties of micro and sub-micron wollastonite fibers in cementitious composites, Constr. Build. Mater. 82 (2015) 351-359.

DOI: 10.1016/j.conbuildmat.2015.02.084

Google Scholar

[10] M. Kodal, S. Erturk, S. Sanli, G. Ozkoc, Properties of talc/wollastonite/polyamide 6 hybrid composites. Polym. Compos. 36 (2015) 739-746.

DOI: 10.1002/pc.22993

Google Scholar

[11] A. Cruz-Ramírez, M. Vargas-Ramírez, M.A. Hernández-Pérez, E. Palacios-Beas, J.F. Chávez-Alcalá, Mold flux characterization for thin slab casting of steel, Rev. Metal. 48 (2012) 245-253.

DOI: 10.3989/revmetalm.1138

Google Scholar

[12] A. Yazdani, H.R. Rezaie, H. Ghassai, M. Mahmoudian, The effect of processing parameters on the hydrothermal synthesis of wollastonite at low pressure, J. Ceram. Process. Res. 14 (2013) 12-16.

Google Scholar

[13] R. Puntharod, C. Sankram, N. Chantaramee, P. Pookmanee, K.J. Haller, Synthesis and characterization of wollastonite from egg shell and datomite by hydrothermal method, J. Ceram. Process. Res. 14 (2013) 198-201.

Google Scholar

[14] H.C. Li, D.G. Wang, C.Z. Chen, F. Weng, H. Shi, Influence of different amount of Na2O additive on the structure, mechanical properties and degradability of bioactive wollastonite, Ceram. Int. in press.

DOI: 10.1016/j.ceramint.2015.09.088

Google Scholar

[15] S. Vichaphund, M. Kitiwan, D. Atong, P. Thavorniti, Microwave synthesis of wollastonite powder from eggshell. J. Eur. Ceram. Soc. 31(2011) 2435-2440.

DOI: 10.1016/j.jeurceramsoc.2011.02.026

Google Scholar

[16] T.V. Vakalova, N.P. Karionova, V.M. Pogrebenkov, V.I. Vereshchagin, V.I. Features of solid phase synthesis of wollastonite from natural and technogenic raw material. Refract. Ind. Ceram. 51(2010) 295-301.

DOI: 10.1007/s11148-010-9309-2

Google Scholar

[17] R. Phuttawong, N. Chantaramee, P. Pookmanee, R. Puntharod, Synthesis and characterization of calcium silicate from rice husk ash and shell of snail Pomacea Canaliculata by solid state reaction, Adv. Mat. Res. 1103 (2015) 1-7.

DOI: 10.4028/www.scientific.net/amr.1103.1

Google Scholar

[18] M. Roulia, K. Chassapis, J.A. Kapoutsis, E.I. Kamitsos, T. Savvidis, Influence of thermal treatment on the water release and glassy structure of perlite, J. Mater. Sci. 41 (2006) 5870-5881.

DOI: 10.1007/s10853-006-0325-z

Google Scholar

[19] M. Lanzon, P.A. García-Ruiz, Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability, Constr. Build. Mater. 22 (2008) 1798-1806.

DOI: 10.1016/j.conbuildmat.2007.05.006

Google Scholar

[20] Q. Jing, L. Fang, H. Liu, P. Liu, Preparation of surface-vitrified micron sphere using perlite from Xinyang China, Appl. Clay. Sci. 53 (2011) 745-748.

DOI: 10.1016/j.clay.2011.07.005

Google Scholar

[21] A.A. Ramezanianpour, S. Mahmoud Motahari Karein, P. Vosoughi, A. Pilvar, S. Isapour, F., Effect of calcined perlite powder as a SCM on the strength and permeability of concrete, Constr. Build. Mater. 66 (2014) 222-228.

DOI: 10.1016/j.conbuildmat.2014.05.086

Google Scholar

[22] M.N. Freire, J.N. F Hokanda, Characterization of avian eggshell aiming its use in a ceramic wall tile paste, Cerâmica. 52 (2006) 240-244.

DOI: 10.1590/s0366-69132006000400004

Google Scholar

[23] Z. Wei, C. Xu, B. Li, Application of waste eggshell as low-cost solid catalyst for biodiesel production, Biores. Technol. 100 (2009) 2883-2885.

DOI: 10.1016/j.biortech.2008.12.039

Google Scholar

[24] T. Witoon, Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent, Ceram. Int. 37 (2011) 3291-3298.

DOI: 10.1016/j.ceramint.2011.05.125

Google Scholar

[25] N. Tangboriboon, R. Kunanuruksapong, A. Sirivat. Meso-porosity and phase transformation of bird eggshell via pyrolysis, J. Ceram. Process. Res. 13 (2012) 413-419.

Google Scholar