[1]
Igor Lyutak, Wavelet analysis of ultrasonic guided waves in pipeline inspection, Intelligent data acquisition and advanced computing systems: Technology and applications, Sofia, Bulgaria (2005) 517-523.
DOI: 10.1109/idaacs.2005.283037
Google Scholar
[2]
Y.J. Yang, G. Cascante, M. A. Polak, Depth detection of surface- breaking cracks in concrete plates using fundamental Lamb modes, NDT & E International, 42 (2009) 501-512.
DOI: 10.1016/j.ndteint.2009.02.009
Google Scholar
[3]
Lee U, Kim S., Identification of multiple directional damages in a thin cylindrical shell, International journal of solids and structures, 43 (2006) 2723-2743.
DOI: 10.1016/j.ijsolstr.2005.03.077
Google Scholar
[4]
H. -C. fu, L. -Z. hua, Z. -Y. yu, Study on the number and the frequency characteristic of transducers in pipe inspection using guided waves, Journal of Beijing University of Technology, 30 (2004) 394-397.
Google Scholar
[5]
K. Sun, G. Meng, L. Ye, Damage size identification of thick steel beam based on ultrasonic guided wave, Journal of vibration and shock, 30(2011) 227-231.
Google Scholar
[6]
Z.H. Song, Z.H. Wang, H.W. Ma, Ultrasonic guided wave-based damage identification with split spectrum processing algorithm, Journal of vibration and shock, 30 (2012) 6-10.
Google Scholar
[7]
X.S. Zhang, J.B. Wang, J.Z. Wang and F.Z. Ji, 2-D reconstruction of the pipeline defects by means of ultrasonic guided wave based on LS- SVM, Journal of Xi'an Shiyou University ( Natural Science Edition), 27 (2012)87-90.
Google Scholar
[8]
B. Liu, L.W. Tang, 2-D Defect Profile Reconstruction from Ultrasonic Guided Waves Signals Adopting Fuzzy Wavelet Packet and LS-SVM, 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2013), Emeishan, China (2013).
DOI: 10.1109/qr2mse.2013.6625940
Google Scholar
[9]
G. -B. Huang, Q. -Y. Zhu, and C. -K. Siew, Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks, 2004 International Joint Conference on Neural Networks (IJCNN'2004), Budapest, Hungary, (2004) 25-29.
DOI: 10.1109/ijcnn.2004.1380068
Google Scholar
[10]
G. -B. Huang, Q. -Y. Zhu, and C. -K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006) 489-501.
DOI: 10.1016/j.neucom.2005.12.126
Google Scholar
[11]
G. -B. Huang and L. Chen, Convex incremental extreme learning machine, Neurocomputing, 70 (2007) 3056–3062.
DOI: 10.1016/j.neucom.2007.02.009
Google Scholar
[12]
G. -B. Huang and L. Chen, Enhanced random search based incremental extreme learning machine, Neurocomputing, 71 (2008) 3460–3468.
DOI: 10.1016/j.neucom.2007.10.008
Google Scholar
[13]
G. -B. Huang, X. Ding, H. Zhou, Optimization method based extreme learning machine for classification, Neurocomputing, 74 (2010) 155-163.
DOI: 10.1016/j.neucom.2010.02.019
Google Scholar
[14]
G. -B. Huang, H. Zhou, X. Ding, and R. Zhang, Extreme learning machine for regression and multiclass classification, IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 42 (2012) 513-529.
DOI: 10.1109/tsmcb.2011.2168604
Google Scholar
[15]
B. Frénay, M. Verleysen, Parameter-insensitive kernel in extreme learning for non-linear support vector regression, Neurocomputing, 74 (2011) 2526-2531.
DOI: 10.1016/j.neucom.2010.11.037
Google Scholar
[16]
W. Zong, H. Zhou, G. -B. Huang, and Z. Lin, Face recognition based on kernelized Extreme Learning Machine, AIS2011, Burnaby, Canada (2011) 263-272.
DOI: 10.1007/978-3-642-21538-4_26
Google Scholar
[17]
I.W. Selesnick, A higher density discrete wavelet transform, IEEE Transactions on Signal Processing, 54 (2006) 3039-3048.
DOI: 10.1109/tsp.2006.875388
Google Scholar
[18]
G. -B. Huang, Q. -Y. Zhu, K.Z. Mao, C. -K. Siew, P. Saratchandran, and N. Sundararajan, Can Threshold Networks Be Trained Directly? IEEE Trans. Circuits and Systems II, 53 (2006) 187-191.
DOI: 10.1109/tcsii.2005.857540
Google Scholar
[19]
G. -B. Huang, Q. -Y. Zhu and C. -K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Transactions on Neural Networks, 17 (2006) 879-892.
DOI: 10.1109/tnn.2006.875977
Google Scholar
[20]
G. -B. Huang, Q. -Y. Zhu and C. -K. Siew, Real-Time Learning Capability of Neural Networks, IEEE Trans. Neural Networks, 17 (2006) 863-878.
DOI: 10.1109/tnn.2006.875974
Google Scholar
[21]
C.R. Rao, S.K. Mitra. Generalized Inverse of Matrices and its Applications, John Wiley & Sons, Inc., New York (1971).
Google Scholar
[22]
D. Serre, Matrices: Theory and Applications, Springer, Heidelberg, (2002).
Google Scholar