[1]
Chetan. Nichkawde, P.M. Harish, and N. Ananthkrishnan, Stability analysis of a multibody system model for coupled slosh-vehicle dynamics, Journal of Sound and Vibration, vol. 275, July-Aug. 2004, pp.1069-1083.
DOI: 10.1016/j.jsv.2003.07.009
Google Scholar
[2]
M. Utsumi, Low-gravity slosh analysis for cylindrical tanks with hemiellipsoidal top and bottom, Journal of Spacecraft and Rockets, vol. 45, July-Aug. 2008, pp.813-821.
DOI: 10.2514/1.35057
Google Scholar
[3]
B. Marsell, S. Gangadharan, Y. Chatman, and J. Sudermann, Using CFD techniques to predict slosh force frequency and damping rate, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, May 2009, Palm Springs, California.
DOI: 10.2514/6.2009-2683
Google Scholar
[4]
J.Y. Kang, and J.E. Cochran, Resonant motion of a spin-stabilized thrusting spacecraft, Journal of Guidance, Control, and Dynamics, Vol. 27, May-June. 2004, pp.356-364.
DOI: 10.2514/1.10331
Google Scholar
[5]
J.Y. Kang, and J.E. Cochran, Stability criteria of slosh motion with periodicity in a spinning spacecraft , Journal of Guidance, Control, and Dynamics, vol. 28, May-June. 2005, pp.562-567.
DOI: 10.2514/1.13580
Google Scholar
[6]
B. Z. Yue, and Z.L. Wang, Numerical study of three-dimensional free surface dynamics, Acta Mech Sinica, vol. 22, Mar. 2006, pp.120-125.
DOI: 10.1007/s10409-006-0100-z
Google Scholar
[7]
B.Z. Yue, Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft, , AIAA Journal, vol. 49, Oct. 2011, p.2090-(2099).
DOI: 10.2514/1.j050144
Google Scholar
[8]
D.L. Cui, S.Y. Yan, X.S. Guo, and R.X. Gao, Parametric resonance of liquid sloshing in partially filled spacecraft tanks during the powered-flight phase of rocket, Aerospace Science and Technology, vol. 35, Mar. 2014, pp.93-105.
DOI: 10.1016/j.ast.2014.03.006
Google Scholar
[9]
Q. Li, X. Ma, and T. Wang, Equivalent mechanical model for liquid sloshing during draining, Acta Astronautica, vol. 68, Jan-Feb. 2011, pp.91-100.
DOI: 10.1016/j.actaastro.2010.06.052
Google Scholar
[10]
H. Shageer, and G. Tao, Zero dynamics analysis for spacecraft with fuel slosh, AIAA Guidance, Navigation and Control Conference, Aug. 2008, Honolulu, Hawaii.
DOI: 10.2514/6.2008-6455
Google Scholar
[11]
H. Shageer, and G. Tao, Modeling and adaptive control of spacecraft with fuel slosh: overview and case studies, AIAA Guidance, Navigation and Control Conference, Aug 2007, Hilton Head, South Carolina.
DOI: 10.2514/6.2007-6434
Google Scholar
[12]
M. Reyhanoglu, and J. R. Hervas, Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes, Control Engineering Practice, vol. 20, Sep. 2012, pp.912-918.
DOI: 10.1016/j.conengprac.2012.05.011
Google Scholar
[13]
Baeten, Prediction of spacecraft fuel dynamics in microgravity, 47th AIAA Aerospace Sciences Meeting Including The New Horizon Forum and Aerospace Exposition, Jan. 2009, Orlando, Florida.
DOI: 10.2514/6.2009-1320
Google Scholar
[14]
Baeten, and A. Joerdeningm, Spacecraft thruster efficiency optimization with respect to coupled solid-liquid dynamics, , 48th AIAA Aerospace Sciences Meeting Including The New Horizon Forum and Aerospace Exposition, Jan 2010, Orlando, Florida.
DOI: 10.2514/6.2010-1446
Google Scholar
[15]
Baeten, and J.C. Juettner, Orbit insertion dynamics of a pico-satellite with respect to coupled solid-liquid dynamics, 48th AIAA Aerospace Sciences Meeting Including The New Horizon Forum and Aerospace Exposition, Jan 2010, Orlando, Florida.
DOI: 10.2514/6.2011-391
Google Scholar
[16]
R.A. Ibrahim. Liquid sloshing dynamics: theory and application [M]. Cambridge University Press, (2005).
Google Scholar
[17]
E.J. Jacob, and G.A. Flandro. Application of current stability models to thrust augmentor pressure oscillations, 46th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2008, Reno, Nevada.
DOI: 10.2514/6.2008-97
Google Scholar
[18]
J. Majdalani A.B. Vyas, and G.A. Flandro, Higher mean-flow approximation for solid rocket Motors with radially regressing walls, AIAA Journal, Vol. 40, Sep. 2002, pp.1780-1788.
DOI: 10.2514/3.15260
Google Scholar