[1]
F. H. Wang, E. I. Mikhail, B. Elena, et al., Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium, Nature Photonics. 7 (2013) 459-465.
DOI: 10.1038/nphoton.2013.66
Google Scholar
[2]
E. A. Ali, O. Jiyoung, E. K. Mikhail, et al., Giant-stroke, superelastic carbon nanotube aerogel muscles, Science. 323 (2009) 1575-1578.
Google Scholar
[3]
P. Dharap, Z. Li, S. Nagarajaiah, et al., Nanotube film based on single-wall carbon nanotubes for strain sensing, Nanotechnology. 15 (2004) 379-382.
DOI: 10.1088/0957-4484/15/3/026
Google Scholar
[4]
T. W. Cheng and W. K. Hsu, Winding of single-walled carbon nanotube ropes: An effective load transfer, Appl Phys Lett. 90 (2007) 123102.
DOI: 10.1063/1.2714282
Google Scholar
[5]
J. P. Salvetat, G. Andrew, D. Briggs, et al., Elastic and shear moduli of single-walled carbon nanotube ropes, Phys Rev Lett. 82 (1999) 944-947.
DOI: 10.1103/physrevlett.82.944
Google Scholar
[6]
H. Barber, S. R. Cohen, H. D. Wagner, Measurement of carbon nanotube–polymer interfacial strength, Appl Phys Lett. 82 (2003) 4140-4142.
DOI: 10.1063/1.1579568
Google Scholar
[7]
Y. L. Kang, Y. Qiu, Z. K. Lei, et al., An application of Raman spectroscopy on the measurement of residual stress in porous silicon, Opt Lasers Eng. 43 (2005) 847-855.
DOI: 10.1016/j.optlaseng.2004.09.005
Google Scholar
[8]
Q. Li, W. Qiu, H. Y. Tan, et al. Micro-Raman spectroscopy stress measurement method for porous silicon film, Opt Lasers Eng. 48 (2010) 1119-1125.
DOI: 10.1016/j.optlaseng.2009.12.020
Google Scholar
[9]
Z. K. Lei, Y. L. Kang, Y. Qiu, et al., Experimental study of capillary effect in porous silicon using micro-Raman spectroscopy and X-ray diffraction, Chin. Phys. Lett. 21 (2004) 1377-1380.
DOI: 10.1088/0256-307x/21/7/054
Google Scholar
[10]
S. B. Cronin, A. K. Swan, M. S. Unlu, et al., Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain, Phys Rev B. 72 (2005) 035425.
DOI: 10.1103/physrevb.72.035425
Google Scholar
[11]
M. F. Mu, S. Osswald, Y. Gogotsi, et al., An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer, Nanotechnology. 20 (2009) 335703.
DOI: 10.1088/0957-4484/20/33/335703
Google Scholar
[12]
W. Qiu, Q. Li, Z. K. Lei, et al., The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy, Carbon. 53 (2013) 161-168.
DOI: 10.1016/j.carbon.2012.10.043
Google Scholar
[13]
W. J. Ma, L. Q. Liu, R. Yang, et al., Monitoring a micromechanical process in macroscale carbon nanotube films and fibers, Adv. Mater. 21 (2009) 603-608.
DOI: 10.1002/adma.200801335
Google Scholar
[14]
Q. Li, Y. L. Kang, W. Qiu, et al., Deformation mechanisms of carbon nanotube fibres under tensile loading by in-situ Raman spectroscopy analysis, Nanotechnology. 22 (2011) 225704.
DOI: 10.1088/0957-4484/22/22/225704
Google Scholar
[15]
X. H. Zhong, Y. L. Li, et al., Continuous multilayered carbon nanotube yarns, Adv Mater. 22 (2010) 692-696.
Google Scholar
[16]
Y. L. Kang, Q. Li and W. Qiu, CN Patent 201110060721. 8 (2011).
Google Scholar
[17]
W. L. Deng, W. Qiu, Q. Li, et al., Multi-scale experiments and interfacial mechanical modeling of carbon nanotube fiber, Experimental Mechanics. 54 (2014) 3-10.
DOI: 10.1007/s11340-012-9706-1
Google Scholar
[18]
H. M. Heise, R. Kuckuk, A. K. Ojha, et al., Characterisation of carbonaceous materials using Raman spectroscopy, J. Raman Spectrosc. 40 (2009) 344-353.
DOI: 10.1002/jrs.2120
Google Scholar