Fabrication and Characterization of Lanthanum Treated Carboxyl-Graphene Oxide Self-Assembled Composite Film on Silicon Substrate

Article Preview

Abstract:

The admixture of graphene oxide (GO) sheets and chloroacetic acid were ultrasonic treated. As a result, epoxy and hydroxyl groups which existed onto GO sheets were transformed into carboxyl groups. Then, the carboxyl-GO sheets were assembled on silicon substrate by taking use of 3-aminopropyltriethoxysilane (APS) as an intermediate coupling agent (marked as APS-GO). Furthermore, La elements were deposited on the APS-GO by means of chemisorption to form multilayer film (APS-GO-La). Chemical compositions, surface morphologies, and microstructures were investigated by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle (WCA). Experimental results suggested that carboxyl-GO sheets distributed homogeneously on Si substrate. Results also indicated that lanthanum elements can react with the-COOH functional groups of GO film and be adsorbed on the APS-GO film surface. The prepared APS-GO-La multilayer film showed low surface free energy, which has potential applications in nano/micro electro-mechanical systems (N/MEMS).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

566-575

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tanaka, Microelectronic engineering 84 (2007) 1341-1344.

Google Scholar

[2] J. Ou, Y. Wang, J. Wang, S. Liu, Z. Li, S. Yang, The Journal of Physical Chemistry C 115 (2011) 10080-10086.

Google Scholar

[3] S.M. Allameh, B. Gally, S. Brown, W.O. Soboyejo, ASTM SPECIAL TECHNICAL PUBLICATION 1413 (2001) 3-15.

Google Scholar

[4] L.P.B. Katehi, J.F. Harvey, E. Brown, Microwave Theory and Techniques, IEEE Transactions on 50 (2002) 858-866.

DOI: 10.1109/22.989969

Google Scholar

[5] K.F. Harsh, W. Zhang, V.M. Bright, Y.C. Lee, Flip-chip assembly for Si-based RF MEMS, IEEE, 1999, pp.273-278.

DOI: 10.1109/memsys.1999.746833

Google Scholar

[6] S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, Science 334 (2011) 958-961.

Google Scholar

[7] B. Bhushan, Tribology Issues and Opportunities in MEMS: Proceedings of the Nsf/Afosr/Asme Workshop on Tribology Issues and Opportunities in Mems Held in Colombus, Ohio, Usa, 9-11 November 1997, Springer, (1998).

DOI: 10.1007/978-94-011-5050-7

Google Scholar

[8] F. Schreiber, Journal of Physics: Condensed Matter 16 (2004) R881.

Google Scholar

[9] F. Risplendi, G. Cicero, Applied Surface Science 267 (2013) 17-20.

Google Scholar

[10] J. Ou, J. Wang, S. Liu, J. Zhou, S. Ren, S. Yang, Applied Surface Science 256 (2009) 894-899.

Google Scholar

[11] M. Fukuda, K. Nakagawa, S. Miyazaki, M. Hirose, Applied physics letters 70 (1997) 2291-2293.

Google Scholar

[12] F.M. Ross, J. Tersoff, R.M. Tromp, Physical Review Letters 80 (1998) 984.

Google Scholar

[13] P.H. Tan, K. Brunner, D. Bougeard, G. Abstreiter, Physical Review B 68 (2003) 125302.

Google Scholar

[14] M.J. Allen, V.C. Tung, R.B. Kaner, Chemical reviews 110 (2009) 132-145.

Google Scholar

[15] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Advanced materials 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[16] L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, J. Huang, Pure and Applied Chemistry 83 (2010) 95-110.

Google Scholar

[17] P.F. Li, Y. Xu, X. -H. Cheng, Surface and Coatings Technology 232 (2013) 331-339.

Google Scholar

[18] L. Chen, Y. Hernandez, X. Feng, K. Müllen, Angewandte Chemie International Edition 51 (2012) 7640-7654.

Google Scholar

[19] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[20] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448 (2007) 457-460.

DOI: 10.1038/nature06016

Google Scholar

[21] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chemical Society Reviews 39 (2010) 228-240.

Google Scholar

[22] C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, Journal of Rare Earths 28 (2010) 43-47.

Google Scholar

[23] D. Zhang, H. Fu, L. Shi, J. Fang, Q. Li, Journal of Solid State Chemistry 180 (2007) 654-660.

Google Scholar

[24] G. Yan-Bao, W. De-Guo, L. Shu-Hai, Z. Si-Wei, Surface and Coatings Technology 205 (2011) 2924-2930.

DOI: 10.1016/j.surfcoat.2010.10.069

Google Scholar

[25] R. Reisfeld, Spectra and energy transfer of rare earths in inorganic glasses, Rare Earths, Springer, 1973, pp.53-98.

DOI: 10.1007/3-540-06125-8_2

Google Scholar

[26] G.H. Dieke, H.M. Crosswhite, Applied optics 2 (1963) 675-686.

Google Scholar

[27] R. Reisfeld, Excited states and energy transfer from donor cations to rare earths in the condensed phase, Rare Earths, Springer, 1976, pp.65-97.

DOI: 10.1007/3-540-07887-8_2

Google Scholar

[28] S. Kobayashi, M. Sugiura, H. Kitagawa, W.W.L. Lam, Chemical reviews 102 (2002) 2227-2302.

Google Scholar

[29] B. Tao, C. Xian-Hua, Thin solid films 515 (2006) 2262-2267.

Google Scholar

[30] Z. Zhang, C. Su, W. Liu, Q. Xue, M. Tan, Wear 192 (1996) 6-10.

Google Scholar

[31] Z. Zhang, X. Lu, B. Han, J. Luo, Materials Science and Engineering: A 444 (2007) 92-98.

Google Scholar

[32] R. Liu, X. Wei, D. Tao, Y. Zhao, Tribology International 43 (2010) 1082-1086.

Google Scholar

[33] W.S. Hummers Jr, R.E. Offeman, Journal of the American Chemical Society 80 (1958) 1339-1339.

Google Scholar

[34] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nature nanotechnology 3 (2008) 101-105.

Google Scholar

[35] X. Wang, N. Zhou, J. Yuan, W. Wang, Y. Tang, C. Lu, J. Zhang, J. Shen, Journal of Materials Chemistry 22 (2012) 1673-1678.

Google Scholar

[36] X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano research 1 (2008) 203-212.

DOI: 10.1007/s12274-008-8021-8

Google Scholar

[37] P. Ramesh, S. Bhagyalakshmi, S. Sampath, Journal of colloid and interface science 274 (2004) 95-102.

Google Scholar

[38] C. Dai, X. Yang, H. Xie, Materials Research Bulletin 46 (2011) 2004-(2008).

Google Scholar

[39] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, The Journal of Physical Chemistry C 112 (2008) 8192-8195.

Google Scholar

[40] Q. Li, F. Fan, Y. Wang, W. Feng, P. Ji, Industrial & Engineering Chemistry Research 52 (2013) 6343-6348.

Google Scholar

[41] P.F. Li, H. Zhou, X. -H. Cheng, Applied Surface Science 285 (2013) 937-944.

Google Scholar

[42] J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, S. Yang, Langmuir 26 (2010) 15830-15836.

Google Scholar

[43] Q. Gu, X. Cheng, Applied surface science 253 (2007) 6800-6806.

Google Scholar

[44] Y. Mo, M. Zhu, M. Bai, Colloids and Surfaces A: Physicochemical and Engineering Aspects 322 (2008) 170-176.

Google Scholar

[45] N.S. Tambe, B. Bhushan, Nanotechnology 16 (2005) 1549.

Google Scholar

[46] D.K. Owens, R.C. Wendt, Journal of applied polymer science 13 (1969) 1741-1747.

Google Scholar

[47] A.W. Adamson, A.P. Gast, (1967).

Google Scholar

[48] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446 (2007) 60-63.

DOI: 10.1038/nature05545

Google Scholar

[49] D. Shu, D. Zhang, Surface Review and Letters 22 (2015) 1550023.

Google Scholar

[50] M. Binggeli, C.M. Mate, Applied physics letters 65 (1994) 415-417.

Google Scholar

[51] X. Xiao, L. Qian, Langmuir 16 (2000) 8153-8158.

Google Scholar