Layer-by-Layer Fabrication and Tribological Investigation of PDDA/GO Multilayer Film

Article Preview

Abstract:

Poly (diallyl dimethylammonium chloride)-graphene oxide multilayer film (PDDA/GO) was successfully fabricated onto a silicon substrate by a layer-by-layer self-assembly technology. Subsequently, PDDA/GO were thermally reduced to be PDDA/RGO in a vacuum. X-ray photoelectron spectroscopy (XPS) was carried out to investigate the formation and microstructure of multilayer samples, as well as by water contacted angle (WCA). Results indicates that the multilayer film was prepared successfully, and the surface energy of PDDA/RGO is lower than PDDA/GO. nanotribological properties was investigated by an atomic force microscopy (AFM). It was found that the frictional coefficients of PDDA/RGO is better than PDDA/GO. To investigate the micro-tribological behaviors, a ball-on-plate tribometer was adopted. Results show that the layer-by-layer self-assembled multilayer thin film possesses good frictional and anti-wear properties. Therefore, both nanoand micro friction performance of PDDA/RGO behaves better than PDDA/GO. The obtained samples make the further application to be more possible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

576-585

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Martin-Olmos, H.I. Rasool, B.H. Weiller, J.K. Gimzewski, ACS nano 7 (2013) 4164-4170.

DOI: 10.1021/nn400557b

Google Scholar

[2] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Science 324 (2009) 1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[3] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, Physical review letters 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[4] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[5] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi, B.H. Hong, Nature 457 (2009) 706-710.

DOI: 10.1038/nature07719

Google Scholar

[6] A.K. Geim, K.S. Novoselov, Nature materials 6 (2007) 183-191.

Google Scholar

[7] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. a. Dubonos, I.V. Grigorieva, A.A. Firsov, science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[8] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[9] S. Liu, J. Ou, Z. Li, S. Yang, J. Wang, Applied Surface Science 258 (2012) 2231-2236.

Google Scholar

[10] X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nature nanotechnology 3 (2008) 491-495.

Google Scholar

[11] C. Lee, X. Wei, J.W. Kysar, J. Hone, science 321 (2008) 385-388.

Google Scholar

[12] J. Pu, Y. Mo, S. Wan, L. Wang, Chemical Communications 50 (2014) 469-471.

Google Scholar

[13] H. Liu, B. Bhushan, Ultramicroscopy 97 (2003) 321-340.

Google Scholar

[14] X. Li, B. Bhushan, K. Takashima, C. -W. Baek, Y. -K. Kim, Ultramicroscopy 97 (2003) 481-494.

Google Scholar

[15] B. Bhushan, Microelectronic Engineering 84 (2007) 387-412.

Google Scholar

[16] N.S. Tambe, B. Bhushan, Nanotechnology 15 (2004) 1561.

Google Scholar

[17] B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann, Ultramicroscopy 105 (2005) 176-188.

Google Scholar

[18] J. Ou, Y. Wang, J. Wang, S. Liu, Z. Li, S. Yang, The Journal of Physical Chemistry C 115 (2011) 10080-10086.

Google Scholar

[19] C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, J. Hone, Nature nanotechnology 4 (2009) 861-867.

DOI: 10.1038/nnano.2009.267

Google Scholar

[20] J. Ou, L. Liu, J. Wang, F. Wang, M. Xue, W. Li, Tribology Letters 48 (2012) 407-415.

Google Scholar

[21] M. -S. Won, O.V. Penkov, D. -E. Kim, Carbon 54 (2013) 472-481.

Google Scholar

[22] D. Berman, A. Erdemir, A.V. Sumant, Carbon 54 (2013) 454-459.

Google Scholar

[23] T. Filleter, J.L. McChesney, A. Bostwick, E. Rotenberg, K.V. Emtsev, T. Seyller, K. Horn, R. Bennewitz, Physical review letters 102 (2009) 086102.

DOI: 10.1103/physrevlett.102.086102

Google Scholar

[24] J. Lin, L. Wang, G. Chen, Tribology Letters 41 (2010) 209-215.

Google Scholar

[25] W. Zhang, M. Zhou, H. Zhu, Y. Tian, K. Wang, J. Wei, F. Ji, X. Li, Z. Li, P. Zhang, D. Wu, Journal of Physics D: Applied Physics 44 (2011) 205303.

Google Scholar

[26] V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, ACS Appl Mater Interfaces 3 (2011) 4221-4227.

DOI: 10.1021/am200851z

Google Scholar

[27] G. Decher, Comprehensive supramolecular chemistry 9 (1996) 507-528.

Google Scholar

[28] S. Madisetti, Z. Zheng, Z. Gong, S. Penmetsa, Y. Lvov, L. Que, Layer-by-layer nanoscale-coating of microparticles with a droplet microfluidic device, IEEE, 2009, pp.445-448.

DOI: 10.1109/nems.2009.5068615

Google Scholar

[29] G. Decher, M. Eckle, J. Schmitt, B. Struth, Current Opinion in Colloid & Interface Science 3 (1998) 32-39.

DOI: 10.1016/s1359-0294(98)80039-3

Google Scholar

[30] N.A. Kotov, I. Dekany, J.H. Fendler, The Journal of Physical Chemistry 99 (1995) 13065-13069.

Google Scholar

[31] G.B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, H. Möhwald, Colloids and Surfaces A: physicochemical and engineering aspects 137 (1998) 253-266.

DOI: 10.1016/s0927-7757(98)00213-1

Google Scholar

[32] N.A. Kotov, Nanostructured Materials 12 (1999) 789-796.

Google Scholar

[33] X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y. Bai, T. Li, Chemistry of materials 16 (2004) 4022-4027.

Google Scholar

[34] G. Decher, science 277 (1997) 1232-1237.

Google Scholar

[35] J.H. Fendler, Chemistry of Materials 8 (1996) 1616-1624.

Google Scholar

[36] H. Zheng, F. Tang, Y. Jia, L. Wang, Y. Chen, M. Lim, L. Zhang, G.M. Lu, Carbon 47 (2009) 1534-1542.

Google Scholar

[37] M.A. Filler, S.F. Bent, Progress in surface science 73 (2003) 1-56.

Google Scholar

[38] J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, S. Yang, Langmuir 26 (2010) 15830-15836.

Google Scholar

[39] S. Wang, D. Yu, L. Dai, D.W. Chang, J. -B. Baek, Acs Nano 5 (2011) 6202-6209.

Google Scholar

[40] L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, J. Huang, Pure and Applied Chemistry 83 (2010) 95-110.

Google Scholar

[41] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Advanced materials 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[42] B. Bhushan, Springer handbook of nanotechnology, Springer, (2010).

Google Scholar