Well-Ordered Nanoporous Copper Fabricated by Dealloying Cu-Mn and its Characterizations

Article Preview

Abstract:

A nanoporous copper (NPC) sample with well-ordered porosity of 20 nm was fabricated by an electrochemical dealloying single-phase Cu0.4Mn0.6 with an external potential of-0.5 V (MSE). The electrochemical mechanism of the dealloying process on the Cu-Mn surface was studied by a liner sweep voltammetry experiment, and an optimized applied voltage for the Cu-Mn system was recommended. The properties of the monolithic NPC, including morphology, chemical composition, surface area and wettability were systematically characterized. The specific surface area around 11.86 m2/g of the as-dealloyed NPC was measured by BET-nitrogen method. The micro/nanoscale bi-continuous 3D porous structures of NPC not only increase the surface area, but also improve the wettability of NPC surface since the increase in surface roughness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

662-668

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.C. Bond, D.T. Thompson, Catalysis by Gold, Catal. Rev. 41 (1999) 319–388.

Google Scholar

[2] T. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanopartical-embedded carbon film electrode and its detection of hydrogen peroxide, Anal. Chem. 75 (2003) 2080–(2085).

DOI: 10.1021/ac026337w

Google Scholar

[3] J.R. Weissmueller, N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum, H. Gleiter, Charge-Induced Reversible Strain in a Metal, Science 300 (2003) 312–315.

DOI: 10.1002/chin.200329012

Google Scholar

[4] S.H. Joo, S.J. Choi, K.J. Kwa, Z. Liu, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412 (2001) 169–172.

DOI: 10.1038/35084046

Google Scholar

[5] Y. Tang, B. Tang, J. Qing, Q. Li, L. Lu, Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer, Applied Surface Science 258(22) (2012) 8747-8751.

DOI: 10.1016/j.apsusc.2012.05.085

Google Scholar

[6] Y. Tang, B. Tang, Q. Li, J. Qing, L. Lu, K. Chen, Pool-boiling enhancement by novel metallic nanoporous surface, Experimental Thermal and Fluid Science 44 (2013) 194-198.

DOI: 10.1016/j.expthermflusci.2012.06.008

Google Scholar

[7] Forty A.J. Corrosion micromorphology of noble metal alloys and depletion. Nature, 1979, 282: 597-598.

DOI: 10.1038/282597a0

Google Scholar

[8] Forty A.J., Durkin P. A micromorphological study of the dissolution of silver-gold alloys in nitric acid, Philosophical Magazine A. Taylor & Francis. 1980: 295-318.

DOI: 10.1080/01418618008239360

Google Scholar

[9] Sieradzki K., Newman R.C. Micro- and nano-porous metallic structures, U.S. Patent 4977038. (1990).

Google Scholar

[10] Newman R.C., Sieradzki K. Metallic corrosion. Science, 1994, 263: 1708-1709.

Google Scholar

[11] Jonah Erlebacher, Michael J. Aziz, Alain Karma, et al. Evolution of Nanoporosity in Dealloying. Nature, 2001, 410: 450-453.

DOI: 10.1038/35068529

Google Scholar

[12] Xiulan Tan, Yongjian Tang, Ying Liu, Jiangshan Luo, Kai Li, Xiaobo Liu, Progress in research on preparations of nanoporous metals by dealloying, Materials review, 2009, 23(3): 68-76.

Google Scholar

[13] Yi Ding, Nanoporousmetals:a new class of nanostructured energy materials, Journal of Shandong University(Natural Science), 2011, 46(10): 121-133.

Google Scholar

[14] Z. Qi, C.C. Zhao, X.G. Wang, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. Journal of Physical Chemistry C, 2009, 113(16): 6694-6698.

DOI: 10.1021/jp810742z

Google Scholar

[15] C.C. Zhao, Z. Qi, X.G. Wang, et al. Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys. Corrosion Science, 2009, 51(9): 2120-2125.

DOI: 10.1016/j.corsci.2009.05.043

Google Scholar

[16] Parida S., Kramer D., Volkert C.A., et al. Volume Change during the Formation of Nanoporous Gold by Dealloying. Physical Review Letters, 2006, 97(3): 035504.

DOI: 10.1103/physrevlett.97.035504

Google Scholar

[17] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, in, National Association of Corrosion Engineers, Houston, Texas, 1974, pp.385-392.

Google Scholar

[18] K. Sieradzki, R.R. Corderman, K. Shukla, R.C. Newman, Computer-Simulations of Corrosion - Selective Dissolution of Binary-Alloys, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 59(4) (1989).

DOI: 10.1080/01418618908209817

Google Scholar

[19] K. Sieradzki, Curvature Effects in Alloy Dissolution, Journal of the Electrochemical Society, 140(10) (1993) 2868-2872.

DOI: 10.1149/1.2220924

Google Scholar

[20] Y. Ding, Y.J. Kim, J. Erlebacher. Nanoporous Gold Leaf: Ancient Technology, /Advanced Material. Advanced Materials, 2004, 16(21): 1897-(1900).

DOI: 10.1002/adma.200400792

Google Scholar

[21] J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K. Sieradzki, Monolithic nanoporous copper by dealloying Mn-Cu, Journal of Materials Research, 21(10) (2006) 2611-2616.

DOI: 10.1557/jmr.2006.0322

Google Scholar

[22] Luo X., Li R., Liu Z., et al. Three-dimensional nanoporous copper with high surface area by dealloying Mg-Cu-Y metallic glasses. Materials Letters, 2012, 76(0): 96-99.

DOI: 10.1016/j.matlet.2012.02.028

Google Scholar

[23] Wenzel R.N. Surface Roughness and Contact Angle. Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.

DOI: 10.1021/j150474a015

Google Scholar