[1]
G.C. Bond, D.T. Thompson, Catalysis by Gold, Catal. Rev. 41 (1999) 319–388.
Google Scholar
[2]
T. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanopartical-embedded carbon film electrode and its detection of hydrogen peroxide, Anal. Chem. 75 (2003) 2080–(2085).
DOI: 10.1021/ac026337w
Google Scholar
[3]
J.R. Weissmueller, N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum, H. Gleiter, Charge-Induced Reversible Strain in a Metal, Science 300 (2003) 312–315.
DOI: 10.1002/chin.200329012
Google Scholar
[4]
S.H. Joo, S.J. Choi, K.J. Kwa, Z. Liu, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412 (2001) 169–172.
DOI: 10.1038/35084046
Google Scholar
[5]
Y. Tang, B. Tang, J. Qing, Q. Li, L. Lu, Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer, Applied Surface Science 258(22) (2012) 8747-8751.
DOI: 10.1016/j.apsusc.2012.05.085
Google Scholar
[6]
Y. Tang, B. Tang, Q. Li, J. Qing, L. Lu, K. Chen, Pool-boiling enhancement by novel metallic nanoporous surface, Experimental Thermal and Fluid Science 44 (2013) 194-198.
DOI: 10.1016/j.expthermflusci.2012.06.008
Google Scholar
[7]
Forty A.J. Corrosion micromorphology of noble metal alloys and depletion. Nature, 1979, 282: 597-598.
DOI: 10.1038/282597a0
Google Scholar
[8]
Forty A.J., Durkin P. A micromorphological study of the dissolution of silver-gold alloys in nitric acid, Philosophical Magazine A. Taylor & Francis. 1980: 295-318.
DOI: 10.1080/01418618008239360
Google Scholar
[9]
Sieradzki K., Newman R.C. Micro- and nano-porous metallic structures, U.S. Patent 4977038. (1990).
Google Scholar
[10]
Newman R.C., Sieradzki K. Metallic corrosion. Science, 1994, 263: 1708-1709.
Google Scholar
[11]
Jonah Erlebacher, Michael J. Aziz, Alain Karma, et al. Evolution of Nanoporosity in Dealloying. Nature, 2001, 410: 450-453.
DOI: 10.1038/35068529
Google Scholar
[12]
Xiulan Tan, Yongjian Tang, Ying Liu, Jiangshan Luo, Kai Li, Xiaobo Liu, Progress in research on preparations of nanoporous metals by dealloying, Materials review, 2009, 23(3): 68-76.
Google Scholar
[13]
Yi Ding, Nanoporousmetals:a new class of nanostructured energy materials, Journal of Shandong University(Natural Science), 2011, 46(10): 121-133.
Google Scholar
[14]
Z. Qi, C.C. Zhao, X.G. Wang, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. Journal of Physical Chemistry C, 2009, 113(16): 6694-6698.
DOI: 10.1021/jp810742z
Google Scholar
[15]
C.C. Zhao, Z. Qi, X.G. Wang, et al. Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys. Corrosion Science, 2009, 51(9): 2120-2125.
DOI: 10.1016/j.corsci.2009.05.043
Google Scholar
[16]
Parida S., Kramer D., Volkert C.A., et al. Volume Change during the Formation of Nanoporous Gold by Dealloying. Physical Review Letters, 2006, 97(3): 035504.
DOI: 10.1103/physrevlett.97.035504
Google Scholar
[17]
M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, in, National Association of Corrosion Engineers, Houston, Texas, 1974, pp.385-392.
Google Scholar
[18]
K. Sieradzki, R.R. Corderman, K. Shukla, R.C. Newman, Computer-Simulations of Corrosion - Selective Dissolution of Binary-Alloys, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 59(4) (1989).
DOI: 10.1080/01418618908209817
Google Scholar
[19]
K. Sieradzki, Curvature Effects in Alloy Dissolution, Journal of the Electrochemical Society, 140(10) (1993) 2868-2872.
DOI: 10.1149/1.2220924
Google Scholar
[20]
Y. Ding, Y.J. Kim, J. Erlebacher. Nanoporous Gold Leaf: Ancient Technology, /Advanced Material. Advanced Materials, 2004, 16(21): 1897-(1900).
DOI: 10.1002/adma.200400792
Google Scholar
[21]
J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K. Sieradzki, Monolithic nanoporous copper by dealloying Mn-Cu, Journal of Materials Research, 21(10) (2006) 2611-2616.
DOI: 10.1557/jmr.2006.0322
Google Scholar
[22]
Luo X., Li R., Liu Z., et al. Three-dimensional nanoporous copper with high surface area by dealloying Mg-Cu-Y metallic glasses. Materials Letters, 2012, 76(0): 96-99.
DOI: 10.1016/j.matlet.2012.02.028
Google Scholar
[23]
Wenzel R.N. Surface Roughness and Contact Angle. Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.
DOI: 10.1021/j150474a015
Google Scholar