[1]
Ederer C, Spaldin N A. A new route to magnetic ferroelectrics. Nat Mater, 2004, 3: 849-851.
DOI: 10.1038/nmat1265
Google Scholar
[2]
Fiebig M. Oberservation of coupled magnetic and electric domains. Nature, 2002, 419: 818-820.
Google Scholar
[3]
Spaldin N A, Manfred Fiebig. The renaissance of magnetoelectric multiferroics. Science, 2005, 309: 391-392.
DOI: 10.1126/science.1113357
Google Scholar
[4]
Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759-765.
DOI: 10.1038/nature05023
Google Scholar
[5]
Catalan G, Scott J F. Physics and applications of Bismuth Ferrite. Adv Mater, 2009, 21: 2463-2485.
DOI: 10.1002/adma.200802849
Google Scholar
[6]
Sosnowska I, Neumaier T P, Steichele E. Spiral magnetic ordering in bismuth ferrite. J Phys C, 1982, 15: 4835-4846.
DOI: 10.1088/0022-3719/15/23/020
Google Scholar
[7]
Chauhan S, Arora M, Sati PC, et al. Structural, vibrational, optical, magnetic and dielectric properties of Bi1-xBaxFeO3 nanoparticles. Ceram Int, 2013, 39: 6399-6405.
DOI: 10.1016/j.ceramint.2013.01.066
Google Scholar
[8]
Tu C S, Hung C M, Xu Z R, et al. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics. J Appl Phys, 2013, 114: 124105.
Google Scholar
[9]
Varshney D, Kumar A. Structural, Raman and dielectric behavior in Bi1-xSrxFeO3 multiferroic, J Mol Struct, 2013, 1038: 242-249.
DOI: 10.1016/j.molstruc.2013.01.065
Google Scholar
[10]
Yin L H, Yang J, Zhao B C. Large remnant polarization and magnetic field induced destruction of cycloidal spin structure in Bi1-xLaxFeO3 (0 £ x £ 0. 2). J Appl Phys, 2013, 113: 214104.
Google Scholar
[11]
Jeon N, Rout D, Kim I W, et al. Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping. Appl Phys Lett, 2011, 98: 072901.
DOI: 10.1063/1.3552682
Google Scholar
[12]
Sheng Y, Rui W B, Qiu X B, et al. The multiferroic properties of polycrystalline Bi1-xYxFeO3 films. J Appl Phys, 2014, 115: 17D902.
Google Scholar
[13]
Dai H Y, Chen Z P, Xue R Z, et al. Structure and multiferroic properties of Eu-substituted BiFeO3 ceramics. Appl Phys A, 2013, 111: 907-912.
DOI: 10.1007/s00339-012-7311-x
Google Scholar
[14]
Cui Y F, Zhao Y G, Luo L B, et al. Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3. Appl Phys Lett, 2010, 97: 222904.
Google Scholar
[15]
Yang C, Jiang J S, Qian F Z, et al. Effect of Ba doping on magnetic and dielectric properties of nanocrystalline BiFeO3 at room temperature. J Alloys Compd, 2010, 507: 29-32.
DOI: 10.1016/j.jallcom.2010.07.193
Google Scholar
[16]
Srivastava A, Singh H K, Awana V P S, et al. Enhancement in magnetic and dielectric properties of La and Pr co substituted BiFeO3. J Alloys Compd, 2013, 552: 336-344.
DOI: 10.1016/j.jallcom.2012.09.142
Google Scholar
[17]
Mao WW, Li XA, Li YT, et al. Structural and magnetic properties of single-phase Bi0. 9Eu0. 1Fe0. 95Co0. 05O3 and Bi0. 9Eu0. 05La0. 05Fe0. 95Co0. 05O3 nanoparticles. Mater Lett, 2012, 76: 135~137.
Google Scholar
[18]
Zhang X, Sui Y, Wang X, et al. Multiferroic and magnetoelectric properties of single-phase Bi0. 85La0. 1Ho0. 05FeO3 ceramics. J Alloys Compd, 2011, 509: 5908-5912.
DOI: 10.1016/j.jallcom.2011.03.037
Google Scholar
[19]
Ederer C, Spaldin N A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics, Phys Rev Let, 2005, 95: 257601.
DOI: 10.1103/physrevlett.95.257601
Google Scholar
[20]
Mao W W, Wang X F, Han Y M, et al. Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. J Alloys Compd, 2014, 584: 520-523.
DOI: 10.1016/j.jallcom.2013.09.117
Google Scholar
[21]
Hu Y C, Jiang Z Z, Gao K G, et al. Fluorine doping effects on the magnetic and electric properties of BiFeO3. Chem Phys Lett, 2012, 534: 62-66.
Google Scholar