Preparation and Mechanical Properties of BiFeO3 Ceramics

Article Preview

Abstract:

Hydrothermal method and sol-gel process were used to synthesize multiferroic BiFeO3 ceramics. X-ray diffraction, scanning electron microscopy, vickers diamond indenter and three-point bending method were used to investigate the effects of methods on the phase structure, microstructures and mechanical properties. Cold isostatic pressing on the ceramics with two different loads (10 MPa, 200 MPa) was used to illustrate the influence of pressure in mechanical properties. The results show that all samples are crystallized in the perovskite phase. A few small traces of impurity are observed at a 2θ of ~28 o, which are found to be those of Bi2Fe4O9. The SEM images depict that samples prepared by sol-gel process are more uniform and the grain size is slightly larger than that of hydrothermal processed samples. The investigations on the hardness and flexural strength demonstrate the ceramics prepared by hydrothermal method have better mechanical properties than that of sol-gel process, and the mechanical properties can be obviously enhanced by increasing pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-296

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. A. Smolenskii, V. A. Bokov, J. Appl. Phys. 35 (1964) 915-918.

Google Scholar

[2] H. Schmid, Ferroelectrics 162 (1994) 317-338.

Google Scholar

[3] C. Michel, J. M. Moreau, G. D. Achenbach, Solid State Commun. 7 (1969) 701-704.

Google Scholar

[4] V. A. Khomchenko, J. A. Paixao, Journal of Materials Science, 50 (2015) 7192-7196.

Google Scholar

[5] M. Muneeswaran, P. Jegatheesan, M. Gopiraman, et al. Applied Physics A, 114 (2014) 853-859.

Google Scholar

[6] C. Ederer, N. A. Spaldin, Phys. Rev. B 71 (2005) 060401.

Google Scholar

[7] L. J. Di, H. Yang, T. Xian, R. S. Li, et al., Ceram. Int. 40 (2014) 4575-4578.

Google Scholar

[8] J. Yang, X. Li, J. Zhou, Y. Tang, Y. Zhang, Y. Li,  J. Alloy Compd. 509 (2011) 9271-9277.

Google Scholar

[9] Y. Liu, Q. Qian, Z. Yi, L. Zhang, F. Min, M. Zhang, Ceram. Int. 39 (2013) 8513-8516.

Google Scholar

[10] S. Farhadi, N. Rashidi, Polyhedron, 29 (2010) 2959-2965.

Google Scholar

[11] J. K. Kim, S. S. Kim, W. J. Kim.   Mater. Lett. 59 (2005) 4006-4009.

Google Scholar

[12] L. Wang, J. B. Xu, B. Gao, A. M. Chang, et al., Materials Research Bulletin 48 (2013) 383-388.

Google Scholar

[13] J. Y. Wang, Y. W. Wei, J. J. Zhang, et al., Materials Letters 124 (2014) 242-244.

Google Scholar

[14] Q. H. Jiang, C. W. Nan, Z. J. Shen, J. Am. Ceram. Soc. 89 (2006) 2123-2127.

Google Scholar

[15] L. M. S. Medina, G. A. Jorge, R. M. Negri, J. Alloys and Compounds, 592 (2014) 306-312.

Google Scholar

[16] Y. X. Wei, X. T. Wang, J. T. Zhu, et al., J. Am. Ceram. Soc., 96 (2013) 3163-3168.

Google Scholar

[17] Q. M. Hang, W. K. Zhou, X. H. Zhu, et al., Journal of Advanced Ceramics 2 (2013) 252–259.

Google Scholar

[18] Cheng J R, Li N, Cross L E, J. Appl. Phys 94 (2003) 5153.

Google Scholar