[1]
N.Q. Minh, Ceramic fuel cells, J. Am. Ceram. Soc. 76(1993) 563-568.
Google Scholar
[2]
M.L. Toebes, J.H. Bitter, A.J. van Dillen, K.P. de Jong, Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers, Catal. Today 76 (2002) 33-42.
DOI: 10.1016/s0920-5861(02)00209-2
Google Scholar
[3]
H.P. He, Y.Y. Huang, J. M. Vohs, R. J. Gorte, Characterization of YSZ-YST composites for SOFC anodes, Solid State Ionics, 175 (2004) 171-176.
DOI: 10.1016/j.ssi.2004.09.033
Google Scholar
[4]
R. Moos, K.H. Hardtl, Electronic transport properties of Sr1-xLaxTiO3 ceramics. J Appl Phys 80 (1996) 393–400.
Google Scholar
[5]
S. Hui, A. Petric, Evaluation of yttrium- doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc. 22(2002)1673–1681.
DOI: 10.1016/s0955-2219(01)00485-x
Google Scholar
[6]
Q.X. Fu, S.B. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3. J. Eur. Ceram. Soc. 28(2008) 811–820.
DOI: 10.1016/j.jeurceramsoc.2007.07.022
Google Scholar
[7]
H. Kurokawa, L. Yang, C.P. Jacobson, C. Lutgard, S.J. De Jonghe, Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells. J. Power. Sources 164 (2007) 510–518.
DOI: 10.1016/j.jpowsour.2006.11.048
Google Scholar
[8]
X. Li, H.L. Zhao, S. Wei, F. Gao, H.X. Huang, Y. Li , Z. Zhu, Synthesis and properties of Y-doped SrTiO3 as anode material for SOFC. J. Power. Sources 166 (2007) 47–52.
DOI: 10.1016/j.jpowsour.2007.01.008
Google Scholar
[9]
M. Hiroaki, K. Kurosaki, Y. Shinsuke, Thermoelectric properties of rare earth doped SrTiO3. J. Alloys. Compd. 350 (2003) 292–295.
DOI: 10.1016/s0925-8388(02)00972-6
Google Scholar
[10]
S.J. Litzelman, A. Rothschild, H.L. Tuller, The electrical properties and stability of SrTi0. 65Fe0. 35O3-δ thin films for auto- motive oxygen sensor applications. Sens. Actuators B 108 (2005) 231–237.
DOI: 10.1016/j.snb.2004.10.040
Google Scholar
[11]
V.V. Kharton, A.V. Kovalevsky, et al. Transport Properties and Thermal Expansion of Sr0. 97Ti1-xFexO3-δ (x=0. 2-0. 8). J. Solid. State. Chem. 156 (2001) 437–444.
Google Scholar
[12]
D.P. Fagg, V.V. Kharton, J.R. Frade, A.A.L. Ferreira, Stability and mixed ionic–electronic conductivity of (Sr, La)(Ti, Fe)O3-δ perovskites. Solid State Ionics 156 (2003) 45– 57.
DOI: 10.1016/s0167-2738(02)00257-6
Google Scholar
[13]
J.S. Yoon, M.Y. Yoon, C. Kwak, H.J. Park, S.M. Lee, K.H. Lee, H.J. Hwang, Y0. 08Sr0. 92FexTi1-xO3-δ perovskite for solid oxide fuel cell anodes. Mater. Sci. Eng B 177 (2011) 151-156.
DOI: 10.1016/j.mseb.2011.10.016
Google Scholar
[14]
B.R. Sudireddy, P. Blennow, K.A. Nielsen, Microtructural and electrical characterization of Nb- doped SrTiO3-YSZ composites for solid oxide cell electrodes, Solid State Ionics 216 (2012) 44-49.
DOI: 10.1016/j.ssi.2011.11.025
Google Scholar
[15]
Q.L. Ma, F. Tietz, D. Sebold, D. Stover, Y-substituted SrTiO3-YSZ composites as anode materials for solid oxide fuel cells: Interaction between SYT and YSZ, J. power sources 195 (2010) 1920-(1925).
DOI: 10.1016/j.jpowsour.2009.09.075
Google Scholar
[16]
K. Shan, X.M. Guo, Synthesis and Electrical properties of Fe-doped Y0. 08Sr0. 92TiO3 mixed ionic- electronic conductor, Materials Letters, 105 (2013): 196-198.
DOI: 10.1016/j.matlet.2013.03.140
Google Scholar