Synthesis and Characterization of Magnesium Aluminate Spinel Porous Ceramics by Novel Molten Salt Method

Article Preview

Abstract:

Magnesium aluminate spinel (MgAl2O4) porous ceramics were in-situ synthesized by heating the mixture of Al2O3 and MgCO3 with MgCl2 salt at 1400~1600 °C for 3 h, and then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of as-prepared MgAl2O4 porous ceramics was dependent on the addition of MgCl2, and it indicated that the MgCl2 molten salt not only acted as a template for pore formation of the porous ceramics, but also provided a liquid environment for the synthesis of MgAl2O4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-403

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. F Lynch, C.G. Ruderer, W.H. Duckworth, Engineering Properties of Selected Ceramic Materials, The American Ceramic Society, Columbus, Ohio, (1966).

Google Scholar

[2] C. Baudin, R. Martinez, P. Pena, High-temperature mechanical behavior of stoichio-metric magnesium spinel, J. Am. Ceram. Soc. 78 (1995) 857-1862.

Google Scholar

[3] J.H. Belding and E.A. Letzgus, U.S. Patent 3, 950, 504. (1976).

Google Scholar

[4] J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Fabrication of translucent magnesium aluminum spinel ceramics, J. Am. Ceram. Soc. 83 (2000) 2866-2868.

DOI: 10.1111/j.1151-2916.2000.tb01648.x

Google Scholar

[5] Z.C. Liu, Y. Chen, Preparation of alumina-spinel porous ceramics by gelcasting, J. B. Inst. Techno. 25 (2005) 1008-1010.

Google Scholar

[6] S. Hashimoto, S. Honda, T. Hiramatsu, Y. Iwamoto, Fabrication of porous spinel (MgAl2O4) from porous alumina using a template method, Ceram. Int. 39 (2013) 2077-(2081).

DOI: 10.1016/j.ceramint.2012.08.062

Google Scholar

[7] I. Ganesh, Fabrication of magnesium aluminate (MgAl2O4) spinel foams. Ceram. Int. 37 (2011) 2237-2245.

DOI: 10.1016/j.ceramint.2011.03.068

Google Scholar

[8] C.Q. Wu, T. Xu, R.B. Dai, Y.J. Bian, Preparation of lightweight spinel refractory aggregate by foaming process, Glass & Enamel 40 (2012) 1-6.

Google Scholar

[9] J.H. Bai, C.C. Wei, F.T. Meng, J.C. Liu, P. Wang, Q.Y. Du, Z.X. Tang, Fabrication of porous Al2O3-MgAl2O4 ceramics using combustion-synthesized powders containing in situ produced pore-forming agents, Mater. Lett. 65 (2011) 1559-1561.

DOI: 10.1016/j.matlet.2011.02.069

Google Scholar

[10] F. Wang, J.K. Ye, G. He, Z.P. Xie, J.T. Li, Preparation and characterization of porous MgAl2O4 spinel ceramic supports from bauxite and magnesite, Ceram. Int. 41 (2015) 7374-7380.

DOI: 10.1016/j.ceramint.2015.02.044

Google Scholar

[11] M.J. Jung, J.S. Im, E. Jeong, H. Jin, YS. Lee, Hydrogen adsorption of PAN-based porous carbon nanofibers using MgO as the substrate, Carbon lett. 10 (2009) 217-220.

DOI: 10.5714/cl.2009.10.3.217

Google Scholar

[12] H. Jost, M. Braun, C. Carius, The role of reactivity in syntheses and the properties of magnesium oxide, Solid State Ionics, 101 (1997) 221-228.

DOI: 10.1016/s0167-2738(97)84034-9

Google Scholar

[13] F. Tavangarian, R. Emadi, Mechanochemical synthesis of single phase nanocrystalline forsterite powder, Int. J. Mod. Phys. B 24 (2010) 343-350.

DOI: 10.1142/s0217979210053987

Google Scholar

[14] S. Liodakis, I. Antonopoulos, V. Tsapara, Forest fire retardancy evaluation of carbonate minerals using DTG and LOI, J. Therm. Anal. Calorim. 96 (2009) 203-209.

DOI: 10.1007/s10973-008-9378-3

Google Scholar

[15] M. Ito, K. Morita, The solubility of MgO in molten MgCl2-CaCl2 salt, Mater. Trans. 45 (2004) 2712-2718.

Google Scholar

[16] B.Y. Ma, Y. Yin, Y. Li, G.Q. Liu, W.L. Huang, Z. Chen, G.Q. Li, J.K. Yu, Facile synthesis of MgAl2O4 with high crystallinity from KCl-MgCl2 composite molten salts, Mater. Res. Innov. (2015). DOI 10. 1179/1433075X15Y. 0000000028.

Google Scholar