Mechanical Properties and Microstructure of 2.5D Cf/ZrO2 Composites Prepared by Precursor Infiltration and Pyrolysis

Article Preview

Abstract:

The 2.5D Cf/ZrO2 composites were fabricated by precursor infiltration and pyrolysis (PIP) with ZrO2 precursor slurry as an impregnation liquid and 2.5D carbon preform as a framework. The effect of cycles of infiltration-pyrolysis on mechanical properties and microstructure of composites was investigated. The results showed that with the increase of cycles of infiltration-pyrolysis the flexural strength and relative density of as-prepared 2.5D Cf/ZrO2 composites increased. After 15 cycles of infiltration-pyrolysis, the density and flexural strength of as-prepared composites were 2.53±0.04g/cm3 and 73.2±2.2MPa respectively. In addition, the specimens with higher densification can transfer load efficiently between ZrO2 and carbon fiber, result in good mechanical properties of composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

639-643

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.Y. Luh, A.G. Evans, J. Am. Ceram. Soc. 70 (1987) 466-469.

Google Scholar

[2] C. Kaya, E.G. Butler, A. Selcuk, et al., J. Eur. Ceram. Soc. 22 (2002) 2333-2342.

Google Scholar

[3] H. Mei, L.F. Cheng, Q.Q. Ke, et al., Carbon 48 (2010) 3007-3013.

Google Scholar

[4] R.B. Deo, J.H. Starnes, R.C. Holzwarth, NASA Sci. Tech. Aerosp. Rep. (STAR) 41 (2003): 1-1-1-11.

Google Scholar

[5] G. T. Wu, Aerosp. Mater. Technol. 4 (1991) 72-77.

Google Scholar

[6] G.H. Zhou, S.W. Wang, X.X. Huang, et al., Ceram. Int. 33 (2007) 1395-1398.

Google Scholar

[7] C. D. Li, Z. F. Chen, J. X. Zhu, et al., Mater. Design 36 (2012) 289-295.

Google Scholar

[8] J. Q. Ma , Y. D. Xu, L. T. Zhang, et al., Scripta Mater. 54 (2006) 1967-(1971).

Google Scholar

[9] J.P. Ai, G.H. Zhou, H.L. Zhanget al, Ceram. Int. 40 (2014) 835-840.

Google Scholar

[10] L. Filipuzzi, G. Camus, R. Naslain, et al, J. Am. Ceram. Soc. 77(1994) 459–466.

Google Scholar

[11] S.S. Lee, L.P. Zawada, J.M. Staehler, et al., J. Am. Ceram. Soc., 81 (1998) 1797–1811.

Google Scholar

[12] R. J. Kerans, R. S. Hay, T. A. Parthasarathy, et al., J. Am. Ceram. Soc., 85 (2002) 2599–2632.

Google Scholar

[13] K. Edalati, S. Toh, Y. Ikoma, Z. Horita, Scripta Mater. 65 (2011) 974-977.

Google Scholar

[14] G.H. Zhou, S.W. Wang, J.K. Guo, Z. Zhang, J. Eur. Ceram. Soc. 28 (2008) 787-792.

Google Scholar

[15] C. Kaya, X. Gu, I. Al-Dawery, et al., Sci. Technol. Adv. Mat. 3 (2002) 35-44.

Google Scholar

[16] X. Gu, P.A. Trusty, E.G. Butler , C.B. Ponton, J. Eur. Ceram. Soc. 20 (2000) 675-684.

Google Scholar

[17] J. Minet, F. Langlais, J. M. Quenisset, et al., J. Eur. Ceram. Soc. 5 (1989) 341–356.

Google Scholar

[18] K. K. Chawla, Ceramic matrix composites. Chapman and Hall, London, U.K., (1993).

Google Scholar

[19] B. Broquere, P. Spriet, M. Lacoste, and J. C. Cavalier, in Proceedings of the 18th European Conference on Materials for Aerospace Applications(Paris–Le Bourget, June 16–17, 1999).

Google Scholar

[20] N. Padmavathi, P. Ghosal, K.K. Ray, Compos. Sci. Technol. 106 (2015) 55-59.

Google Scholar

[21] N. Padmavathi, J. Subrahmanyam, P. Ghosal, et al., J. Mater. Process Technol. 204 (2008) 434-439.

Google Scholar