[1]
W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 90(2007) 1347-64.
DOI: 10.1111/j.1551-2916.2007.01583.x
Google Scholar
[2]
S.Q. Guo. Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. Soc., 29(2009) 995-1011.
Google Scholar
[3]
A. Paul, D.D. Jayaseelan, S. Venugopal, et al. UHTC composites for hypersonic applications. Am. Ceram. Soc. Bull., 91(2012)22-8.
Google Scholar
[4]
A.K. Kuriakose, J.L. Margrave. The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J. Electrochem. Soc., 111(1964)827-31.
DOI: 10.1149/1.2426263
Google Scholar
[5]
W.C. Tripp, H.C. Graham. Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800-1500 ◦C. J. Electrochem. Soc., 118(1968)1195-9.
Google Scholar
[6]
W.G. Fahrenholtz. The ZrB2 volatility diagram. J. Am. Ceram. Soc., 88(2005)3509-12.
Google Scholar
[7]
M. Manab, K.K. Ray, R. Mitra. Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J. Eur. Ceram. Soc., 31 (2011) 199-215.
DOI: 10.1016/j.jeurceramsoc.2010.08.018
Google Scholar
[8]
E. Zapata, D.D. Jayaseelan, H.T. Lin. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. J. Eur. Ceram. Soc., 33 (2013) 1373–86.
DOI: 10.1016/j.jeurceramsoc.2012.12.009
Google Scholar
[9]
V. Zamora, A.L. Ortiz, et al. Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement. J. Eur. Ceram. Soc., 32 (2012) 2529-36.
DOI: 10.1016/j.jeurceramsoc.2012.02.023
Google Scholar
[10]
J.C. Han, P. Hu, et al. Oxidation behavior of zirconium diboride-silicon carbide at 1800oC. Scripta Mater., 57(2007) 825-28.
DOI: 10.1016/j.scriptamat.2007.07.009
Google Scholar
[11]
Q.G. Han, Q.C. Ban, P.W. Zhu. Design of a novel large volume cubic high pressure apparatus for raising the yield and quality of synthetic diamond. J. Cryst. Growth, 422(2015) 29-35.
DOI: 10.1016/j.jcrysgro.2015.04.028
Google Scholar