The Oxidation Resistance of ZrB2-SiC Composites Fabricated by High Pressure and High Temperature Sintering

Article Preview

Abstract:

Dense ZrB2-SiC composites were fabricated by high pressure and high temperature sintering(HPHT) at 1500 oC for 3 min under a pressure of 5 GPa. The vickers’ hardness of ZrB2-SiC composite is 25 GPa. The flexural strength of the ZrB2-SiC composite is 300 MPa with the amount of SiC increased to 30wt.%, which increased after the composites oxidized at high temperature. The generated glass phase like SiO2 sealed pores and cracks on the surface of the ZrB2-SiC composite to increase the mechanical properties of the ZrB2-SiC composite. After oxdized at 1500oC for 45 mins, the dense oxidized film formed on the surface of ZrB2-SiC composites to improve the resistance oxi dation of ZrB2 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

680-684

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 90(2007) 1347-64.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[2] S.Q. Guo. Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. Soc., 29(2009) 995-1011.

Google Scholar

[3] A. Paul, D.D. Jayaseelan, S. Venugopal, et al. UHTC composites for hypersonic applications. Am. Ceram. Soc. Bull., 91(2012)22-8.

Google Scholar

[4] A.K. Kuriakose, J.L. Margrave. The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J. Electrochem. Soc., 111(1964)827-31.

DOI: 10.1149/1.2426263

Google Scholar

[5] W.C. Tripp, H.C. Graham. Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800-1500 ◦C. J. Electrochem. Soc., 118(1968)1195-9.

Google Scholar

[6] W.G. Fahrenholtz. The ZrB2 volatility diagram. J. Am. Ceram. Soc., 88(2005)3509-12.

Google Scholar

[7] M. Manab, K.K. Ray, R. Mitra. Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J. Eur. Ceram. Soc., 31 (2011) 199-215.

DOI: 10.1016/j.jeurceramsoc.2010.08.018

Google Scholar

[8] E. Zapata, D.D. Jayaseelan, H.T. Lin. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. J. Eur. Ceram. Soc., 33 (2013) 1373–86.

DOI: 10.1016/j.jeurceramsoc.2012.12.009

Google Scholar

[9] V. Zamora, A.L. Ortiz, et al. Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement. J. Eur. Ceram. Soc., 32 (2012) 2529-36.

DOI: 10.1016/j.jeurceramsoc.2012.02.023

Google Scholar

[10] J.C. Han, P. Hu, et al. Oxidation behavior of zirconium diboride-silicon carbide at 1800oC. Scripta Mater., 57(2007) 825-28.

DOI: 10.1016/j.scriptamat.2007.07.009

Google Scholar

[11] Q.G. Han, Q.C. Ban, P.W. Zhu. Design of a novel large volume cubic high pressure apparatus for raising the yield and quality of synthetic diamond. J. Cryst. Growth, 422(2015) 29-35.

DOI: 10.1016/j.jcrysgro.2015.04.028

Google Scholar