Immobilization of Laccase in Glycidoxypropyl-Functionalized Magnetic Mesoporous SiO2/Fe3O4 Hollow Microspheres

Article Preview

Abstract:

Glycidoxypropyl-functionalized magnetic mesoporous SiO2/Fe3O4 hollow microspheres (FMMS) with various amounts of terminally bonded groups in the pore channels were synthesized by the co-condensation of tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxylsilane (GPTMS) in the presence of cetyltrimethylammonium bromide (CTAB) and 1,3,5-triisoporpylbenzene (TMB), and utilized as supports for laccase immobilization. It is revealed that glycidoxypropyl groups have been successfully covalently attached to the pore wall of magnetic mesoporous SiO2/Fe3O4 hollow microspheres (MMS). The magnetic mesoporous SiO2/Fe3O4 microspheres (sample10%FMMS) have a saturation magnetization of 13.6 emu·g-1 and a low coercivity (50 Oe). The functional materials preserve a mesoscopic ordering at a concentration of GPTMS as high as 15%. The BET surface area and pore volume of the functionalized materials decrease with increasing amount of GPTMS, but a desirable pore structure remains when the GPTMS amount increases to 10%. The 10%FMMS material exhibits higher laccase immobilization and stability than pure MMS because of the covalent interaction between the amino groups of laccase and the epoxy groups of the functional MMS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

749-755

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.N. Gupta, M. Kaloti, M. Kapoor, K. Solanki, Nanomaterials as matrices for enzyme immobilization, Artifical cells, Nanomedicine, and Biotechnology. 39 (2011) 98-109.

DOI: 10.3109/10731199.2010.516259

Google Scholar

[2] Z.W. Zhao, W. Lei, X.B. Zhang, B.P. Wang, H.L. Jiang, ZnO-based amperometric enztme biosensors, sensors. 10 (2010) 1216-1231.

DOI: 10.3390/s100201216

Google Scholar

[3] H. H. P. Yiu, P. A. Wright, Enzyme supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid, J. Mater. Chem. 15 (2005) 3690-3700.

DOI: 10.1039/b506090g

Google Scholar

[4] Y.F. Zhu, K. Emanuel, I. Toshiyuki, An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates, Chem. Mater. 21 (2009) 2547-2553.

DOI: 10.1021/cm900956j

Google Scholar

[5] S.H. Xuan, F.X. Liang, K.Y. Shu, Novel method to fabricate magnetic hollow silica particles with anisotropic structure, J. Magn. Magn. Mater. 321 (2009) 1029-1033.

DOI: 10.1016/j.jmmm.2008.10.002

Google Scholar

[6] W.R. Zhao, H.R. Chen, Y.S. Li, Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained release property, J. Adv. Funct. Mater. 18 (2008) 2780-2788.

DOI: 10.1002/adfm.200701317

Google Scholar

[7] S.H. Wu, Y.S. Lin, Y.H. Chou, Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies, Chem. Bio. Chem. 9 (2008) 53-57.

DOI: 10.1002/cbic.200700509

Google Scholar

[8] T. Sen, I.J. Bruce, Mesporous silica-magnetite nanocomposites: Fabrication, characterisation and applications in biosciences, Micropor. Mesopor. Mater. 120 (2009) 246-251.

DOI: 10.1016/j.micromeso.2008.11.012

Google Scholar

[9] Z.C. Zhang, L.M. Zhang, L. Chen, Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA, Bio. Technol. Prog. 22 (2006) 514-518.

DOI: 10.1021/bp050400w

Google Scholar

[10] J.F. Diaz, K.J. Balkus Jr, Enzyme immobilization in MCM-41 molecular sieve, J. Mol. Catal. B. 2 (1996) 115-126.

Google Scholar

[11] J. Kim, J. Lee, H.B. Na, B.C. Kim, A magnetically sepaeable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica, Small. 1 (2005) 1203-1207.

DOI: 10.1002/smll.200500245

Google Scholar

[12] P.H. Pandya, R.V. Jasra, B.L. Newalkar, P.N. Bhatt, Studies on the activity and stability of immobilized amylase in ordered mesoporous silicas. 77 (2005) 67-77.

DOI: 10.1016/j.micromeso.2004.08.018

Google Scholar

[13] W. Na, Q. Wei, J.N. Lan, Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas(PMOs), Micropor. Mesopor. Mater. 134 (2010) 72-78.

DOI: 10.1016/j.micromeso.2010.05.009

Google Scholar

[14] T. Asefa, M.J. MacLachlan, N. Coombs, G. A. Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls, Nature. 402 (1999) 867-871.

DOI: 10.1038/47229

Google Scholar

[15] H. Sun, X. Bao, X.S. Zhao, Immobilization of penicillin G Acylase on oxirane-modified mesoporous silicas, Langmuir. 25 (2009) 1807-1812.

DOI: 10.1021/la803480c

Google Scholar

[16] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol. 2 (2007) 1451-1463.

DOI: 10.1016/j.enzmictec.2007.01.018

Google Scholar

[17] C. Mateo, V. Grazu, J.M. Palomo, F. Lopez-Gallego, R. Fernandea-Lafuente, J.M. Guisan, Immobilization of enzymes on heterofunctional epoxy supports, Nat. Protoc. 2 (2007) 1022-1033.

DOI: 10.1038/nprot.2007.133

Google Scholar

[18] Q.Y. Li, R.N. Wang, Z.R. Nie, Q. Wei, Z.H. Wang, Preparation of three-dimensional flower-like Ni(OH)2 nanostructures by a facial template-free solution process, J. Alloys and Compound. 496 (2010) 300-305.

DOI: 10.1016/j.jallcom.2010.02.001

Google Scholar

[19] Z.L. Hua, J.L. Shi, L. Wang, W.H. Zhang, Preparation of mesoporous silica films on a glass slide: surfactant template removal by solvent extraction, J. Non-Cryst. Solids. 292 (2001) 177-183.

DOI: 10.1016/s0022-3093(01)00806-7

Google Scholar

[20] R.V. Grieken, G. Calleja, G.D. Stucky, J.A. Melero, R.A. Garcia, J. Iglesias, Supercritical fluid extraction of a nonionic surfactant template from SBA-15 materials and consequences on the porous structure, Langmuir. 19 (2003) 3966-3973.

DOI: 10.1021/la026970c

Google Scholar

[21] Y. Lv, G. Lu, Y. Wang, Y. Guo, Z. Zhang, Y. Wang, X. Liu, Functionalization of cubic la3d mesoporous silica for immobilization of penicillin G Acylase. 17(2007) 2160-2166.

DOI: 10.1002/adfm.200600505

Google Scholar