Formation Mechanisms of the Point Defects from the 4H-SiC (0001) Surface to the Interior Layers: First Principle Calculation

Article Preview

Abstract:

With the extended applications of hexagonal silicon carbide (h-SiC) in the various fields, particularly in the application of the electronic devices, more and more attentions have been focused on the micro structures as well as their physical properties of h-SiC surface. In this study, we have performed the first principal calculations to compare the formation energies of four typical defects (Vc, Vsi, CI and SiI) on the 4H-SiC (0001) surface as well as in the interior layers. Due to the surface reconstruction and the reduced lattice constrain, the optimized structures of the defects on/near the 4H-SiC (0001) surface are quite different from the ones in the deeper layers. The distinguished formation energies as function of chemical potential indicate that we may control the defects concentrations in different layers by tuning the environmental conditions. This theoretical work provides a significant understanding to the formation mechanism of the point defects on the 4H-SiC surface, and paves a way to the modification of the SiC surface via electron irradiation or ion implantation with micro-defects introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

771-776

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. J. Choyke, H. Matsunami and G. Pensl, Springer-Verlag, Silicon Carbide: Recent Major Advances, Berlin, (2004).

DOI: 10.1007/978-3-642-18870-1

Google Scholar

[2] H. Zhang, L. M. Tolbert and B. Ozpineci, Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles, IEEE Trans. Ind. Appl. 47(2) (2011) 912-921.

DOI: 10.1109/tia.2010.2102734

Google Scholar

[3] Y. Katoh, L. L. Snead, I. Szlufarska and W. J. Weber, Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mat. Sci. 16(3) (2012) 143-152.

DOI: 10.1016/j.cossms.2012.03.005

Google Scholar

[4] E. Rauls, Z. Hajnal, P. Deak and T. Frauenheim, Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC, Phys. Rev. B. 64(24) (2001).

Google Scholar

[5] T. Umeda, N. T. Son, J. Isoya, et al., Identification of the carbon antisite-vacancy pair in 4H-SiC, Phys. Rev. Lett. 96(14) (2006).

Google Scholar

[6] N. T. Son, P. Carlsson, J. ul Hassan, E. Janzen, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima and H. Itoh, Divacancy in 4H-SiC, Phys. Rev. Lett. 96(5) (2006).

DOI: 10.1103/physrevlett.96.055501

Google Scholar

[7] T. C. Cai, Z. Z. Jia, B. M. Yan, D. P. Yu and X. S. Wu, Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC, Appl. Phys. Lett. 106(1) (2015).

DOI: 10.1063/1.4905453

Google Scholar

[8] G. W. Liu, M. L. Muolo, F. Valenza and A. Passerone, Survey on wetting of SiC by molten metals, Ceram. Int. 36(4) (2010) 1177-1188.

DOI: 10.1016/j.ceramint.2010.01.001

Google Scholar

[9] T. Lingner, S. Greulich-Weber, et al., Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy-carbon antisite pair, Phys. Rev. B. 64(24) (2001).

DOI: 10.1103/physrevb.64.245212

Google Scholar

[10] L. Li and I. S. T. Tsong, Atomic structures of 6H-SiC (0001) and (0001) surfaces, Surface Science. 351(1-3) (1996) 141-148.

DOI: 10.1016/0039-6028(95)01355-5

Google Scholar

[11] J. Olander and K. Larsson, Influence of adsorbed species on the reconstruction of 4H-SiC(0001) surfaces, J. Phys. Chem. B. 105(32) (2001) 7619-7623.

DOI: 10.1021/jp010499z

Google Scholar

[12] J. Pollmann, P. Krueger and M. Sabisch, Atomic and Electronic Structure of SiC Surface from ab-initio Calculations, Physica Status Solidi (B): Basic Research. 202(1) (1997) 421-421.

DOI: 10.1002/1521-3951(199707)202:1<421::aid-pssb421>3.0.co;2-d

Google Scholar

[13] U. Starke, Atomic Structure of Hexagonal SiC Surfaces, Physica Status Solidi (B): Basic Research. 202(1) (1997) 475-475.

DOI: 10.1002/1521-3951(199707)202:1<475::aid-pssb475>3.0.co;2-e

Google Scholar

[14] P. E. Blochl, Projector augmented–wave methods, Phys. Rev. B. 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[15] G. Kresse, J. Furthumuller, Efficient iterative schenes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54(1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[16] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[17] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave methods, Phys. Rev. B. 59(1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[18] M. Sabisch, P. Krüger and J. Pollmann, Ab initio calculations of structural and electronic properties of 6H-SiC(0001) surfaces, Phys. Rev. B. 55(16) (1997) 10561-10570.

DOI: 10.1103/physrevb.55.10561

Google Scholar

[19] F. Bernardini, A. Mattoni and L. Colombo, Energetics of native point defects in cubic silicon carbide, Eur. Phys. J. B. 38(3) (2004) 437-444.

DOI: 10.1140/epjb/e2004-00137-6

Google Scholar

[20] L. Ji, C. Tang, L. Z. Sun and J. X. Zhong, Nucleation effect of Sia of 6H-SiC-(0001)-(Ö3xÖ3) R30° surface: First-principles study, Physica B. 405(17) (2010) 3576-3580.

DOI: 10.1016/j.physb.2010.05.043

Google Scholar

[21] J. Olander and K. Larsson, Influence of adsorbed species on the reconstruction of 4H-SiC(0001) surfaces, J. Phys. Chem. B. 105(32) (2001) 7619-7623.

DOI: 10.1021/jp010499z

Google Scholar