Coalescence of the Fullerenes in SWNT with Bend Junction

Article Preview

Abstract:

The coalescence of the fullerenes encapsulated in the host single-walled carbon nanotube (SWNT) with bend junction is explored theoretically by energy driven kinetic Monte Carlo (EDKMC) method. Despite the lower productivity of successful coalescence (with clear identified chiralitys), there is still a possibility to form the inner tube with bend junction which can copy the separated pentagon and heptagon from the host tube exactly with the chiralitys at the two sides clearly identified. The statistic to ~20 successfully coalesced inner tubes with bend junctions shows that the chiral angle differences (CAD) between the two sides > 20 o, which is determined by the minimization of the formation energies of the junctions. Therefore, the chirality distribution of the inner tube may be effectively narrowed by tuning the CAD of the bend host tube, which may provide an alternative way to the application of specific control to the chiralitys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

789-794

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.V. Talyzin, S.M. luzan, I.V. Anoshkin, A.G. Nasibulin, H. Jiang and E.I. Kauppinen, Hydrogen-driven collapse of C60 inside single-walled carbon nanotubes, Angew. Chem. Int. Ed. 51 (2012) 4435-4439.

DOI: 10.1002/anie.201200946

Google Scholar

[2] P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson, M. Monthioux, L. Noe and J. Nygard, Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments, Nat. Commun. 1 (2010) 37.

DOI: 10.1038/ncomms1034

Google Scholar

[3] B.W. Smith, M. Monthioux and D.E. Luzzi, Encapsulated C60 in carbon nanotubes, Nature 396(6709) (1998) 323-324.

DOI: 10.1038/24521

Google Scholar

[4] B.W. Smith, M. Monthioux and D.E. Luzzi, Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials, Chem. Phys. Lett. 315 (1999) 31-36.

DOI: 10.1016/s0009-2614(99)00896-9

Google Scholar

[5] Bandow, M. Takizawa, K. Hirahara, M. Yudasaka and S. Iijima, Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem. Phys. Lett. 337 (2001) 48-54.

DOI: 10.1016/s0009-2614(01)00192-0

Google Scholar

[6] M. Soto, T.A. Boyer, S. Biradar, L. Ge, R. Vajtai, A. Elias-Zuniga, P.M. Ajayan and E.V. Barrera, Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes, Nanotechnology 26 (2015) 165201.

DOI: 10.1088/0957-4484/26/16/165201

Google Scholar

[7] K.E. Moore, D.D. Tune and B.S. Flavel, Double-walled carbon nanotube processing, Adv. Mater. 27 (2015) 3105-3137.

DOI: 10.1002/adma.201405686

Google Scholar

[8] T. Okazaki, S. Bandow, G. Tamura, Y. Fujita, K. Lakoubovskii, S. Kazaoui, N. Minami, T. Saito, K. Suenaga and S. Lijima, Photoluminescence quenching in peapod-derived double-walled carbon nanotubes, Phys. Rev. B. 74(15) (2006) 153404.

DOI: 10.1103/physrevb.74.153404

Google Scholar

[9] C. Bousige, S. Rols, E. Paineau, S. Rouziere, C. Mocuta, H. Kataura and P. Launois, In situ X-ray diffraction observation of two-step fullerene coalescence in carbon peapods, Eur. Phys. Lett. 103 (2013) 66002.

DOI: 10.1209/0295-5075/103/66002

Google Scholar

[10] J.Y. Zhang, F. Zhou, Y. Miyata, H. Su and H. Shinohara, Chirally selective growth and extraction of single-wall carbon nanotubes via fullerene nano-peapods, RSC Adv. 3(38) (2013) 16954-16957.

DOI: 10.1039/c3ra43133a

Google Scholar

[11] S. Han, M. Yoon, S. Berber, N. Park, E. Osawa, J. Ihm and D. Tomanek, Microscopic mechanism of fullerene fusion, Phys. Rev. B. 70(11) (2004) 113402.

DOI: 10.1103/physrevb.70.113402

Google Scholar

[12] I. lee, S. Jun, H. kim, S.Y. Kim and Y. Lee, Adatom-assisted structural transformations of fullerenes, Appl. Phys. Lett. 88 (2006) 011913.

DOI: 10.1063/1.2161175

Google Scholar

[13] F. Ding, Z.W. Xu, B.I. Yakobson, R.J. Young, L.A. Kinloch, S. Cui, L.B. Deng, P. Puech and M. Monthioux, Formation mechanism of peapod-derived double-walled carbon nanotubes, Phys. Rev. B. 82(4) (2010) 041403.

DOI: 10.1103/physrevb.82.041403

Google Scholar

[14] Z.W. Xu, H. Li, K. Fujisawa, Y.A. Kim, M. Endo and F. Ding, Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence, Nanoscale 4(1) (2012) 130-136.

DOI: 10.1039/c1nr10889a

Google Scholar

[15] J. Han, M.P. Anantram, R.L. Jaffe, J. Kong and H. Dai, Observation and modeling of single-wall carbon nanotube bend junctions, Phys. Rev. B. 57(23) (1998) 14983-14989.

DOI: 10.1103/physrevb.57.14983

Google Scholar

[16] Z. Yao, H.W.C. Postma, L. Balents and C. Dekker, Carbon nanotube intramolecular junctions, Nature 402(6759) (1999) 273-276.

DOI: 10.1038/46241

Google Scholar

[17] M. Ouyang, J.L. Huang, C.L. Cheung and C.M. Lieber, Atomically resolved single-walled carbon nanotube intramolecular junctions, Science 291(5) (2001) 97-100.

DOI: 10.1126/science.291.5501.97

Google Scholar

[18] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni and S. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. : Condens. Matter 14 (2002) 783-802.

DOI: 10.1088/0953-8984/14/4/312

Google Scholar

[19] F. Ding and B.I. Yakobson, Energy-driven kinetic Monte Carlo method and its application in fullerene coalescence, J. Phys. Chem. Lett. 5 (2014) 2922-2926.

DOI: 10.1021/jz501324y

Google Scholar

[20] A.J. Stone and D.J. Wales, Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. 128(5-6) (1986) 501-503.

DOI: 10.1016/0009-2614(86)80661-3

Google Scholar

[21] H. Chadli, F. Fergani, M. Bentaleb, B. Fakrach, K. Sbai, A. Rahmani, J.L. Bantignies and J.L. Sauvajol, Influence of packing on the vibrations of homogeneous bundles of C60 peapods, Physica E 71 (2015) 31-38.

DOI: 10.1016/j.physe.2015.03.018

Google Scholar