Sintering of SiC Coating Layer on Graphite Spheres Prepared by Pack Cementation

Article Preview

Abstract:

Pack cementation is an effective method in the manufacture of SiC coating on carbon material substrate surface, which is a controllable and simple process. Meanwhile, due to the reactive infiltration process of powder mixture into the substrate, a gradient transition structure layer is formed between the substrate and outer layer. In this paper, SiC was coated on the spherical substrates taken from the matrix graphite pebbles of high temperature gas-cooled reactor (HTR) fuel element. Relations between the Si/C content ratio of the pack mixture and the thickness of SiC layer were studied. Analysis found that Si/C content ratio, powder size and sintering time are factors influenced the thickness of the coating layers. When the Si/C content ratio was higher than 3:1, a uniform thickness coating bonded well with the substrate was obtained. The composition phases and thickness of coating layer etc. also had obvious changes along with the change of the Si/C content ratio in this research.Results also show that sintering atmosphere and particle size of powders are important factors affecting coating microstructure, while a vacuum atmosphere can smaller powder size can help to get a dense structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

807-813

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. S. Jacobson, D. M. Curry, Oxidation microstructure studies of reinforced carbon/carbon, Carbon. 44 (2006) 1142-1150.

DOI: 10.1016/j.carbon.2005.11.013

Google Scholar

[2] V. Raman, G. Bhatia, A. Mishra, Development of carbon-ceramic composites, Mater. Sci. Eng. A. A412 (2005) 31-36.

Google Scholar

[3] F. F. Lange, T. K. Gupta, Sintering of SiC with Boron Compounds, J. Am. Ceram. Soc. 59 (1976) 537-538.

Google Scholar

[4] L. Stobierski, A. Gubernat, Sintering of silicon carbide І, Ceram. Int. 29 (2003) 287-292.

Google Scholar

[5] L. Stobierski, A. Gubernat, Sintering of silicon carbide IІ , Ceram. Int. 29 (2003) 355-361.

DOI: 10.1016/s0272-8842(02)00144-x

Google Scholar

[6] Z. J. Dong, S. X. Liu, X. K. Li, Influence of infiltration temperature on the microstructure and oxidation behavior of SiC-ZrC ceramic coating on C/C composites prepared by reactive melt infiltration, Ceram. Int. 41 (2015) 797-811.

DOI: 10.1016/j.ceramint.2014.08.138

Google Scholar

[7] Z. S. Chen, H. J. Li, Q. G. Fu, Influence of grain size on wear behavior of SiC coating for carbon/carbon composites at elevated temperatures, Mater. Des. 53 (2014) 412-418.

DOI: 10.1016/j.matdes.2013.07.046

Google Scholar

[8] Q. L. Shen, H. J. Li, Q. Song, SiC nanowire reinforced carbon/carbon composites with improved inter laminar strength, Mater. Sci. Eng. A. 651 (2016) 583-589.

Google Scholar

[9] K. D. Xia, C. X. Lu and Y. Yang, Preparation of an anti-oxidative SiC/SiO2 coating on carbon fibers by a sol-gel method, Carbon, 63 (2013) 594.

DOI: 10.1016/j.carbon.2013.06.059

Google Scholar

[10] X. J. He, J. L. Song, J. Tan, SiC coating: An alternative for the protection of nuclear graphite from liquid fluoride salt, J. Nucl. Mater. 448 (2014) 1-3.

Google Scholar

[11] C. H. Tang, J. Guan, Improvement in oxidation resistance of the nuclear graphite by reaction-coated SiC coating, J. Nucl. Mater. 224 (1995) 103-108.

DOI: 10.1016/0022-3115(95)00031-3

Google Scholar

[12] M. Soueidan, G. Ferro, B. Nsouli, Effect of growth parameters on the heteroepitaxy of 3C-SiC on 6H-SiC substrate by chemical vapor deposition, Mater. Sci. Eng. B. 130 (2006) 66-72.

DOI: 10.1016/j.mseb.2006.02.052

Google Scholar

[13] Y. Hua, L. Zhang, L. Cheng, Silicon carbide whisker reinforced silicon carbide composites by chemical vapor infiltration, Mater. Sci. Eng. A. 428 (2006) 346-350.

DOI: 10.1016/j.msea.2006.05.050

Google Scholar

[14] Y. H. Yuna, Y. H. Parkb, M. Y. Ahnb, CVR-SiC coating of graphite pebbles for fusion blanket application, Ceram. Int. 40 (2014) 879-885.

DOI: 10.1016/j.ceramint.2013.06.082

Google Scholar

[15] D. Huang, M. Y. Zhang, Q. Z. Huang, Preparation of a double layer SiC coating and its oxidation resistance at 1773 K, Corros. Sci. 87 (2014) 134-140.

DOI: 10.1016/j.corsci.2014.06.024

Google Scholar

[16] T. J. Hua, X. D. Lia, G. Y. Lia, SiC fibers with controllable thickness of carbon layer prepared directly by preceramic polymer pyrolysis routes, Carbon. 176 (2011) 706-710.

DOI: 10.1016/j.mseb.2011.02.024

Google Scholar

[17] B. Paula, J. Prakasha, et al., Formation and characterization of uniform SiC coating on 3-D graphite substrate using halide activated pack cementation method, Surf. Coat. Technol. 282 (2015) 60-67.

DOI: 10.1016/j.surfcoat.2015.10.012

Google Scholar

[18] X. F. Qiang, H. J. Li, Y. L. Zhang, et al., A modified dual-layer SiC oxidation protective coating for carbon/carbon composites prepared by one-step pack cementation, Corros. Sci. 53 (2011) 523-527.

DOI: 10.1016/j.corsci.2010.09.043

Google Scholar

[19] J. P. Zhang, Q. G. Fu, L. Zhuang, Oxidation behaviour of SiC coated C/C–ZrC–ZrB2–SiC composites in wind tunnel at 1600°C, Surf. Eng. 31 (2015) 368-372.

DOI: 10.1179/1743294414y.0000000401

Google Scholar

[20] X. Yao, H. Li, Y. Zhang, A SiC/ZrB2–SiC/SiC oxidation resistance multilayer coating for carbon/carbon composites, Corros. Sci. 57 (2012) 148-153.

DOI: 10.1016/j.corsci.2011.12.023

Google Scholar

[21] O. Paccaud, A. Derré, Silicon Carbide Coating by Reactive Pack Cementation—Part I: Silicon Carbide/Silica Interaction, Chem. Vap. Deposition. 6 (2000) 33-40.

DOI: 10.1002/(sici)1521-3862(200002)6:1<33::aid-cvde33>3.0.co;2-z

Google Scholar

[22] O. Paccaud, A. Derré, Silicon Carbide Coating by Reactive Pack Cementation—Part II: Silicon Monoxide/Carbon Reaction, Chem. Vap. Deposition. 6 (2000) 41-50.

DOI: 10.1002/(sici)1521-3862(200002)6:1<41::aid-cvde41>3.0.co;2-8

Google Scholar

[23] H. Liang, X. Yao, J. Zhang, Low temperature pressureless sintering of α-SiC with Al2O3 and CeO2 as additives, J. Eur. Ceram. Soc. 34 (2014) 831-835.

DOI: 10.1016/j.jeurceramsoc.2013.09.015

Google Scholar

[24] C. H. Tang, High temperatures gas-cooled reactors fuel elements. Chemical Industry Press, Beijing, (2007).

Google Scholar