Microsculpturing of Polymeric Surfaces by Compression Molding

Article Preview

Abstract:

Surface micropatterning of polymers is an important process in a large number of applications ranging from microelectronics, sensors design and material science, to tissue engineering and cell biology. In this study a simple and versatile method for manufacturing micro-scale polymer surface patterns has been developed. Micropatterned surfaces of acrylonitrile-butadiene–styrene (ABS) were engineered by compression molding. Two different micropatterned surfaces were fabricated using diverse molds. The first micropatterning was achieved on a brass mold by the intersection of instrumented microindentation traces. The second microsculptured surface was realized through a bronze sintered mold. The morphological aspects and the surface wettability after microsculpturing were investigated. The microsculptured ABS surface produced by the sintered mold shows a higher contact angle compared with those of flat ABS surfaces. From the experimental results, it was found that the intrinsic hydrophobicity of the material is enhanced simply through increasing surface roughness of the solid surface. The method presented is an economical process to fabricate hydrophobic microsculptured surfaces and it is suitable for many kinds of materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Geometric control of cell life and death, Science 276 (1997) 1425–28.

DOI: 10.1126/science.276.5317.1425

Google Scholar

[2] Y.L. Wang, C.E. Sims, P. Marc, M. Bachman, G.P. Li, N.L. Allbritton, Micropatterning of living cells on a heterogeneously wetted surface, Langmuir 22 (2006) 8257-62.

DOI: 10.1021/la061602k

Google Scholar

[3] H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Liquid morphologies on structured surfaces: From microchannels to microchips, Science 283 (1999) 46-49.

DOI: 10.1126/science.283.5398.46

Google Scholar

[4] L.B. Xu, W. Chen, A. Mulchandani, Y.S. Yan, Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic, Angew. Chem. Int. Ed. 44 (2005) 6009-12.

DOI: 10.1002/anie.200500868

Google Scholar

[5] S.L. Tao, K.C. Popat, J.J. Norman, T.A. Desai, Surface modification of Su-8 for enhanced biofunctionality and nonfouling properties, Langmuir 24 (2008) 2631-36.

DOI: 10.1021/la703066z

Google Scholar

[6] G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P.D. Cozzoli, A. Athanassiou, Adv. Funct. Mater. 19 (2009) 1149-57.

DOI: 10.1002/adfm.200800909

Google Scholar

[7] A. Athanassiou, M. I. Lygeraki, D. Pisignano, K. Lakiotaki, M. Varda, E. Mele, C. Fotakis, R. Cingolani, S.H. Anastasiadis, Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring, Langmuir 22 (2006).

DOI: 10.1021/la052122g

Google Scholar

[8] F. Xia, L. Feng, S.T. Wang, T.L. Sun, W.L. Song, W.H. Jiang, L. Jiang, Dual-responsive surfaces that switch superhydrophilicity and superhydrophobicity, Adv. Mater. 18 (2006) 432-36.

DOI: 10.1002/adma.200501772

Google Scholar

[9] Jeong H.E., Kwak M.K., Park C.I., Suh K.Y., Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography, J. Colloid Interface Sci. 339 (2009) 202-7.

DOI: 10.1016/j.jcis.2009.07.020

Google Scholar

[10] Y. Kwon, N. Patankar, J. Choi, J. Lee, Design of surface hierarchy for extreme hydrophobicity, Langmuir, 25 (2009) 6129-36.

DOI: 10.1021/la803249t

Google Scholar

[11] A. Pruna, J. Ramiro, L. Belforte, Preliminary study on different technological tools and polymeric materials towards superhydrophobic surfaces for automotive applications, J. Phys. Chem. Solids 74 (2013) 1640-45.

DOI: 10.1016/j.jpcs.2013.06.009

Google Scholar

[12] T.G. Cha, J.W. Yi, M.W. Moon, K.R. Lee, H.Y. Kim, Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness, Langmuir, 26 (2010) 8319-26.

DOI: 10.1021/la9047402

Google Scholar

[13] A. Tropmann, L. Tanguy, P. Koltay, R. Zengerle, L. Riegger, Completely superhydrophobic PDMS surfaces for microfluidics, Langmuir 28 (2012) 8292-95.

DOI: 10.1021/la301283m

Google Scholar

[14] D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity, Microelectron. Eng. 86 (2009) 1375-78.

DOI: 10.1016/j.mee.2009.02.017

Google Scholar

[15] X. Liu, C. Luo, Fabrication of super-hydrophobic channels, J. Micromech. Microeng. 20 (2010), 025029.

DOI: 10.1088/0960-1317/20/2/025029

Google Scholar

[16] S. Guo, M. Sun, J. Shi, Y. Liu, W. Huang, C. Combellas, Y. Chen, Patterning of hydrophilic micro arrays with superhydrophobic surrounding zones, Microelectron. Eng. 84 (2007) 1673-76.

DOI: 10.1016/j.mee.2007.01.190

Google Scholar

[17] X.S. Zhang, B.H. Jin, S.G. Chu, N. Peter, F.Y. Zhu, H.X. Zhang, Single-step fabrication of superhydrophobic micro/nano dual-scale PDMS film replicated from ultra-low-surface-energy mold, in: IEEE 26th International Conference on Micro Electro Mechanical Systems, Taiwan (2013).

DOI: 10.1109/memsys.2013.6474245

Google Scholar

[18] E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, Recent advances in designing superhydrophobic surfaces, J. Colloid Interface Sci. 402 (2013) 1-18.

DOI: 10.1016/j.jcis.2013.03.041

Google Scholar

[19] M. Madou, Fundamentals of microfabrication. Boca Raton, CRC Press, (1997).

Google Scholar

[20] V.K. Varadan, X. Jiang, V.V. Varadan, Microstereolithography and other fabrication techniques for 3D MEMS. Wiley, New York, (2001).

Google Scholar

[21] H.K. Koponen, I. Saarikoski, T. Korhonen, M. Pääkkö, R. Kuisma, T.T. Pakkanen, M. Suvanto, T.A. Pakkanen, Modification of cycloolefin copolymer and poly(vinyl chloride) surfaces by superimposition of nano- and microstructures, Appl. Surf. Sci. 253 (2007).

DOI: 10.1016/j.apsusc.2006.11.039

Google Scholar

[22] E. Puukilainen, T. Rasilainen, M. Suvanto, T.A. Pakkanen, Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures Langmuir 23 (2007) 7263-68.

DOI: 10.1021/la063588h

Google Scholar

[23] T.O. Yoon, H.J. Shin, S.C. Jeoung, Y.I. Park, Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification, Opt. Express. 16 (2008) 12715-25.

DOI: 10.1364/oe.16.012715

Google Scholar

[24] D. Copic, J.S. Park, S. Tawfick, M.F.L. De Volder, J.H. Hart, Fabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds, Lab. Chip. 11 (2011) 1831-37.

DOI: 10.1039/c0lc00724b

Google Scholar

[25] H.E. Jeong, S.H. Lee, J.K. Kim, K.Y. Suh, Nanoengineered multiscale hierarchical structures with tailored wetting properties, Langmuir 22 (2006) 1640-45.

DOI: 10.1021/la0526434

Google Scholar

[26] H.E. Jeong, R. Kwak, J.K. Kim, K.Y. Suh, Generation and self-replication of monolithic, dual-scale polymer structures by two-step capillary-force lithography, Small 4 (2008) 1913-18.

DOI: 10.1002/smll.200800151

Google Scholar

[27] F. Zhang, J. Chan, H.Y. Low, Biomimetic hierarchical structures on polymer surfaces by sequential imprinting, Appl. Surf. Sci. 254 (2008) 2975-79.

DOI: 10.1016/j.apsusc.2007.10.061

Google Scholar

[28] H.E. Jeong, M.K. Kwak, C.I. Park, K.Y. Suh, Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography, J. Colloid Interf. Sci. 339 (2009) 202-207.

DOI: 10.1016/j.jcis.2009.07.020

Google Scholar

[29] M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, L. Jiang, Super-hydrophobic PDMS surface with ultra-low adhesive force, Macromol. Rapid Commun. 26 (2005) 1805–1809.

DOI: 10.1002/marc.200500458

Google Scholar

[30] G. Davaasuren, C.V. Ngo, H.S. Oh, D.M. Chun, Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS), Appl. Surf. Sci. 314 (2014) 530–536.

DOI: 10.1016/j.apsusc.2014.06.170

Google Scholar