Phenol-Formaldehyde Resin to Improve Corrosion Resistance of Zinc Layers

Article Preview

Abstract:

The present work has the purpose to study and to evaluate the corrosion resistance of zinc layers and phenol – formaldehyde resin/Zn composite layers obtained by electrodeposition. For the best results it was used different parameters for electrodeposition such as: current density between 3 – 5 A/dm2, time for electrodeposition: 30 minutes and 60 minutes, stirring rate: 500 rpm and 800 rpm. Different sizes (mean diameter size between 0.1 – 5.0μm and 6.0 – 10.0μm) of dispersed phases were used with concentration into electrolyte solution from 10g/L to 25 g/L of polymer particles. The morphology of the layers was investigated by SEM – EDX methods. The surface morphology of composite layers was different as compared with pure zinc layers. By adding polymer particles into zinc electrolyte during electroplating a very good distribution of polymer on zinc layer surface was obtained. The electrochemical behavior of the composite layers in the corrosive environment was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solution 0.5M sodium chloride was used in a three electrode open cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Asthana, A. Kumar, N.B. Dahotre, Materials processing and manufacturing science, Edited by Butterworth-Heinemann, London, (2006).

Google Scholar

[2] C.M. Praveen Kumar, T.V. Venkatesha, K.G. Chandrappa, Effect of surfactants on co-deposition of B4C nanoparticles in Zn matrix by electrodeposition and its corrosion behavior, Surf. Coat. Technol. 206 (2012) 2249-2257.

DOI: 10.1016/j.surfcoat.2011.09.075

Google Scholar

[3] H.B. Muralidhara, Y. Arthoba Nayaka, J. Balasubramanyam, K. Yogesh Kumar, H. Hanumanthappa, M.S. Veena, Electrodeposition of Zn–Graphite nanoparticles composite and their characterization, J. Chem. Pharm. Res. 4 (2012) 440-449.

Google Scholar

[4] Y. Reyes-Vidal, R. Suarez-Rojas, C. Ruiz, J. Torres, Ş. Ţălu, A. Méndez, G. Trejo, Electrodeposition, characterization and antibacterial activity of zinc/silver particle composite coatings, Appl. Surf. Sci. 342 (2015) 34-41.

DOI: 10.1016/j.apsusc.2015.03.037

Google Scholar

[5] P.I. Nemes, M. Lekka, L. Fedrizzi, L.M. Muresan, Influence of the electrodeposition current regime on the corrosion resistance of Zn–CeO2 nanocomposite coatings, Surf. Coat. Technol. 252 (2014) 102-107.

DOI: 10.1016/j.surfcoat.2014.04.051

Google Scholar

[6] B.M. Praveen, T.V. Venkatesha, Electrodeposition and properties of Zn-nanosized TiO2 composite coatings, Appl. Surf. Sci. 254 (2008) 2418-2424.

DOI: 10.1016/j.apsusc.2007.09.047

Google Scholar

[7] K. Vathsala, T.V. Venkatesha, Zn–ZrO2 nanocomposite coatings: Elecrodeposition and evaluation of corrosion resistance, Appl. Surf. Sci. 257 (2011) 8929-8936.

DOI: 10.1016/j.apsusc.2011.05.067

Google Scholar

[8] O. Sancakoglu, O. Culha, M. Toparli, B. Agaday, E. Celik, Co-deposited Zn-submicron sized Al2O3 composite coatings: Production, characterization and micromechanical properties, Mater. Des. 32 (2011) 4054-4061.

DOI: 10.1016/j.matdes.2011.03.027

Google Scholar

[9] S. Bindiya, S. Basavanna, Y. Arthoba Naik, Electrodeposition and corrosion properties of Zn-V2O5 composite coatings, J. Mater. Eng. Perform. 21 (2012) 1879-1884.

DOI: 10.1007/s11665-011-0099-6

Google Scholar

[10] K. Kondo, A. Ohgishi, Z. Tanaka, Electrodeposition of Zinc - SiO2 composite, J. Electrochem. Soc. 147 (2000) 2611-2613.

DOI: 10.1149/1.1393577

Google Scholar

[11] X. Bai, H. Tran, D. Yu, A. Vimalanandan, X. Hu, M. Rohwerder, Novel conducting polymer based composite coatings for corrosion protection of zinc, Corros. Sci. 95 (2015) 110-116.

DOI: 10.1016/j.corsci.2015.03.003

Google Scholar

[12] D. Vasilakopoulos, M. Bouroushian, Electrochemical codeposition of PMMA particles with zinc, Surf. Coat. Technol. 205 (2010) 110-117.

DOI: 10.1016/j.surfcoat.2010.06.011

Google Scholar

[13] O. Kammona, K. Kotti, C. Kiparissides, J.P. Celis, Synthesis of polymeric and hybrid nanoparticles for electroplating applications, J. Electrochim. Acta 54 (2009) 2450-2457.

DOI: 10.1016/j.electacta.2008.05.017

Google Scholar

[14] A. Hovestad, R.J.C.H.L. Heesen, L.J.J. Janssen, Electrochemical deposition of zinc–polystyrene composites in the presence of surfactants, J. Appl. Electrochem. 29 (1999) 331-338.

Google Scholar

[15] D. Koleva, N. Boshkov, G. Raichevski, L. Veleva, Electrochemical corrosion behavior and surface morphology of electrodeposited zinc, zinc-cobalt and their composite coatings, Trans. Inst. Met. Finish. 83 (2005) 188-193.

DOI: 10.1179/002029605x61676

Google Scholar

[16] P. Petrov, M. Bozukov, Ch.B. Tsvetanov, Innovative approach for stabilizing poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) micelles by forming nano-sized networks in the micelle, J. Mater. Chem. 15 (2005) 1481-1486.

DOI: 10.1039/b417563h

Google Scholar

[17] L. Benea, M. Mardare-Pralea, Electrodeposition of UHMWPE particles with cobalt for biomedical applications, Dig. J. Nanomater. Bios. 6 (2011) 1025-1034.

Google Scholar

[18] R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, 4th ed., Houghton Mitffllin Co., Boston, (1990).

Google Scholar

[19] M.R.H. de Almeida, E.P. Barbano, M.F. de Carvalho, P.C. Tulio, I.A. Carlos, Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization, Appl. Surf. Sci. 333 (2015).

DOI: 10.1016/j.apsusc.2015.02.005

Google Scholar

[20] M.F. de Carvalho, I. A. Carlos, Zinc electrodeposition from alkaline solution containing trisodium nitrilotriacetic added, Electrochim. Acta, 15 (2013) 229-239.

DOI: 10.1016/j.electacta.2013.09.136

Google Scholar

[21] S. Ranganatha, T.V. Venkatesha, K. Vathsala, M.K.P. Kumar, Electrochemical studies on Zn/nano-CeO2 electrodeposited composite coatings, Surf. Coat. Technol., 208 (2012), 64-72.

DOI: 10.1016/j.surfcoat.2012.08.004

Google Scholar

[22] X. Xia, I. Zhitomirsky, J.R. Mc Dermid, Electrodeposition of zinc and composite zinc–yttria stabilized zirconia coatings, J. Mater. Proc. Technol. 209 (2009) 2632-2640.

DOI: 10.1016/j.jmatprotec.2008.06.031

Google Scholar

[23] D.A. Koleva, N. Boshkov, V. Bachvarov, H. Zhan, J.H.W. de Wit, K. van Breugel, Application of PEO113–b-PS218 nano-aggregates for improved protective characteristics of composite zinc coatings in chloride-containing environment, Surf. Coat. Technol. 204 (2010).

DOI: 10.1016/j.surfcoat.2010.04.043

Google Scholar

[24] N. Boshkov, N. Tsvetkova, P. Petrov, D. Koleva, K. Petrov, G. Avdeev, Ch. Tsvetanov, G. Raichevsky, R. Raicheff, Corrosion behavior and protective ability of Zn and Zn–Co electrodeposits with embedded polymeric nanoparticles, Appl. Surf. Sci. 254 (2008).

DOI: 10.1016/j.apsusc.2008.03.013

Google Scholar

[25] M. Stern, A. Geary, Electrochemical Polarization: I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc. 104 (1957) 56-63.

DOI: 10.1149/1.2428473

Google Scholar

[26] N. Jadhav, C.A. Vetter, V.J. Gelling, The effect of polymer morphology on the performance of a corrosion inhibiting polypyrrole/aluminum flake composite pigment, J. Electrochim. Acta 102 (2013) 28-43.

DOI: 10.1016/j.electacta.2013.03.128

Google Scholar