Effect of Annealing on the Mechanical and Electrical Behavior of Polyurethane/Multi-Walled Carbon Nanotube Nanocomposites

Article Preview

Abstract:

The objective of this research is to investigate the effect of the annealing process on the mechanical and electrical properties of thermoplastic polyurethane/multi-walled carbon nanotube (TPU/MWCNT) nanocomposites. The TPU/MWCNT nanocomposites were prepared by melt-mixing the TPU with 1, 3, and 5 wt.% MWCNT. The TPU/MWCNT injection-molded specimens were annealed at 110°C at different annealing time intervals. The mechanical properties of TPU/MWCNT nanocomposites (Young modulus, tensile strength at yield, stress at break and strain at break) were measured before and after the annealing at constant crosshead speed of 100 mm/min. Furthermore, the DC conductivity of the TPU/MWCNT injection molding specimens was measured before and after annealing, and the percolation thresholds were determined based on following the percolation theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-17

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Mohan, R. Sung Hun, A.M. Shanmugharaj, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, Eur. Polym. J. 49 (2013) 3492-3500.

DOI: 10.1016/j.eurpolymj.2013.08.009

Google Scholar

[2] C. Schilde, M. Schlomann, A. Overbeck, S. Linke, A. Kwade, Thermal, mechanical and electrical properties of highly loaded CNT-epoxy composites – A model for the electric conductivity, Compos. Sci. Technol. 117 (2015) 183-190.

DOI: 10.1016/j.compscitech.2015.06.013

Google Scholar

[3] F. Quadrini, D. Bellisario, L. Santo, Recycling of thermoset polyurethane foams, Polym. Eng. Sci. 53 (2013) 1357-1363.

DOI: 10.1002/pen.23393

Google Scholar

[4] Z. Spitalskya, D. Tasisb, K. Papagelisb, C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (2010) 357-401.

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[5] H. Jin-Hua, Z. Hui, C. Ming-Ji, W. Guo-Rui, Z. Zhong, CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness, Compos. Sci. Technol. 103 (2014) 63-71.

DOI: 10.1016/j.compscitech.2014.08.015

Google Scholar

[6] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gunko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44 (2006) 1624-1652.

DOI: 10.1016/j.carbon.2006.02.038

Google Scholar

[7] D.J. Martin, A.F. Osman, Y. Andriani, G.A. Edwards, Thermoplastic polyurethane (TPU)-based polymer nanocomposites, Woodhead Publishing Limited, 2012, pp.321-350.

DOI: 10.1533/9780857096241.2.321

Google Scholar

[8] http: /www. etrma. org, European tyre & Rubber Manufacturers Association, End of Life Tyres: a Valuable Resource with Growing Potential, (2011).

Google Scholar

[9] W.C. Wang, C.J. Bai, C.T. Lin, S. Prakash, Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine, Appl. Therm. Eng. 93 (2015) doi: 10. 1016/j. applthermaleng. 2015. 09. 056.

DOI: 10.1016/j.applthermaleng.2015.09.056

Google Scholar

[10] M. Nachman, K. Kwiatkowski, The effect of thermal annealing on the abrasion resistance of a segmented block copolymer urethane elastomers, Wear 306 (2013) 113-118.

DOI: 10.1016/j.wear.2013.07.014

Google Scholar

[11] Y. Yanagiharaa, N. Osaka, S. Iimori, S. Murayama, H. Saito, Relationship between modulus and structure of annealed thermoplastic polyurethane, Mater. Today Commun. 2 (2015) e9-e15.

DOI: 10.1016/j.mtcomm.2014.10.001

Google Scholar

[12] C. Garzón, H. Palza, Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process, Compos. Sci. Technol. 99 (2014) 117-123.

DOI: 10.1016/j.compscitech.2014.05.018

Google Scholar

[13] Y. Zeng, P. Liu, J. Du, L. Zhao, P.M. Ajayan, H.M. Chengm, Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube–polymer interactions, Carbon 48 (2010) 3551-3558.

DOI: 10.1016/j.carbon.2010.05.053

Google Scholar

[14] F. Vila, P. Dhima, F. Mandija, The influence of temperature on the electrical resistivity of the cellular polypropylene and the effect of activation energy, SpringerPlus 2: 472 (2013) 2: 472.

DOI: 10.1186/2193-1801-2-472

Google Scholar

[15] S. Wang, Characterization and analysis of electrical conductivity proprieties of nanotube composites-Thesis, Departament of Industrial Engeneering, The Florida State University, (2005).

Google Scholar

[16] I.D. Rosca, S.V. Hoa, Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling, Carbon 47 (2009) 1958-(1968).

DOI: 10.1016/j.carbon.2009.03.039

Google Scholar

[17] F. Grillard, C. Jaillet, C. Zakri, P. Miaudet, A. Derré, A. Korzhenko, P. Gaillard, P. Poulin, Conductivity and percolation of nanotube based polymer composites in extensional deformations, Polymer 53 (2012) 183-187.

DOI: 10.1016/j.polymer.2011.11.020

Google Scholar

[18] C. Feng, L. Jiang (2013), Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites, Composites: Part A 47 (2013) 143-149.

DOI: 10.1016/j.compositesa.2012.12.008

Google Scholar

[19] T. Takeda, Y. Shindo, Y. Kuronuma, F. Narita, Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites, Polymer 52 (2011) 3852-3856.

DOI: 10.1016/j.polymer.2011.06.046

Google Scholar

[20] E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, T. Peijs, Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour, Compos. Sci. Technol. 74 (2013).

DOI: 10.1016/j.compscitech.2012.10.008

Google Scholar

[21] J. Bouchard, A. Cayla, E. Devaux, C. Campagne, Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites, Compos. Sci. Technol. 86 (2013) 177-184.

DOI: 10.1016/j.compscitech.2013.07.017

Google Scholar

[22] M. Felisberto, A. Arias-Dura´n, J.A. Ramos, I. Mondragon, R. Candal, S. Goyanes, G. H. Rubiolo, Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites, Physica B. 407 (2012) 3181–3183.

DOI: 10.1016/j.physb.2011.12.059

Google Scholar

[23] J. Chen, Z. Zhang, W. Huang, J. Li, J. Yang, Yong Wang, Zuo-wan Zhou, Ji-hong Zhang, Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane, Mater. Des. 69 (2015) 105–113.

DOI: 10.1016/j.matdes.2014.12.054

Google Scholar

[24] Information in www. nanocyl. com – Nanocyl, Technical Data Sheet.

Google Scholar

[25] P. Theilmann, D.J. Yun, P. Asbeck, S.H. Park, Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling, Org. Electron. 14 (2013).

DOI: 10.1016/j.orgel.2013.02.029

Google Scholar

[26] S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys. 45 (1973) 574-588.

DOI: 10.1103/revmodphys.45.574

Google Scholar

[27] D. J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media, Solid State Phys. 46 (1992) 147-269.

DOI: 10.1016/s0081-1947(08)60398-7

Google Scholar