[1]
P. D. Silva and K. Sagoe-Crenstil, Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems, Cement and Concrete Research, vol. 38, pp.870-876, (2008).
DOI: 10.1016/j.cemconres.2007.10.003
Google Scholar
[2]
P. Duxson, A. Ferna´ndez-Jime´nez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. v. Deventer, Geopolymer technology: the current state of the art, J Mater Sci, vol. 42, pp.2917-2933, (2007).
DOI: 10.1007/s10853-006-0637-z
Google Scholar
[3]
J. Davidovits, Geopolymers: Inorganic polymeric new materials, Journal of Thermal Analysis, vol. 37, pp.1633-1656, (1991).
DOI: 10.1007/bf01912193
Google Scholar
[4]
J. L. Provis, C. Z. Yong, P. Duxson, and J. S. J. v. Deventer, Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 336, pp.57-63, (2009).
DOI: 10.1016/j.colsurfa.2008.11.019
Google Scholar
[5]
D. Panias, I. P. Giannopoulou, and T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 301, pp.246-254, (2007).
DOI: 10.1016/j.colsurfa.2006.12.064
Google Scholar
[6]
P. N. Lemougna, K. J. D. MacKenzie, and U. F. C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash, Ceramics International, vol. 37, pp.3011-3018, (2011).
DOI: 10.1016/j.ceramint.2011.05.002
Google Scholar
[7]
H. K. Tchakoute, A. Elimbi, E. Yanne, and C. N. Djangang, Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature, Cement & Concrete Composites, vol. 38, pp.75-81, (2013).
DOI: 10.1016/j.cemconcomp.2013.03.010
Google Scholar
[8]
W. Hajjaji, S. Andrejkovicˇová, C. Zanelli, M. Alshaaer, M. Dondi, J. A. Labrincha, et al., Composition and technological properties of geopolymers based on metakaolin and red mud, Materials and Design, vol. 52, pp.648-654, (2013).
DOI: 10.1016/j.matdes.2013.05.058
Google Scholar
[9]
H. Xu and J. S. J. V. Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, vol. 59, pp.247-266, (2000).
DOI: 10.1016/s0301-7516(99)00074-5
Google Scholar
[10]
K. Sagoe-Crentsil and L. Weng, Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems, Advances in Geopolymer Science and Technology, vol. 42, pp.3007-3014, (2007).
DOI: 10.1007/s10853-006-0818-9
Google Scholar
[11]
D. Hardjito and B. V. Rangan, Fly Ash-Based Geopolymer Concrete, Australian Journal of Structural Engineering, vol. 6, pp.1-9, (2005).
DOI: 10.1080/13287982.2005.11464946
Google Scholar
[12]
C. Kuenzel, L. M. Grover, L. Vandeperre, A. R. Boccaccini, and C. R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars, Journal of the European Ceramic Society, vol. 33, pp.251-258, (2013).
DOI: 10.1016/j.jeurceramsoc.2012.08.022
Google Scholar
[13]
C. Ferone, G. Roviello, F. Colangelo, R. Cioffi, and O. Tarallo, Novel hybrid organic-geopolymer materials, Applied Clay Science, vol. 73, pp.42-60, (2013).
DOI: 10.1016/j.clay.2012.11.001
Google Scholar
[14]
J. L. Bell, P. E. Driemeyer, and W. M. Kriven, Formation of Ceramics from Metakaolin-Based Geopolymers: Part I—Cs-Based Geopolymer, J. Am. Ceram. Soc, vol. 92, pp.1-8, (2009).
DOI: 10.1111/j.1551-2916.2008.02790.x
Google Scholar
[15]
L. C. D. Jonghe and M. N. Rahaman, Sintering of Ceramics, in Handbook of Advanced Ceramics, ed. United States of America: Elsevier Inc., (2013).
Google Scholar
[16]
V. Zivica, M. T. Palou, and T. I. L. Bágel, High strength metahalloysite based geopolymer, Composites: Part B, vol. 57, pp.155-165, (2014).
DOI: 10.1016/j.compositesb.2013.09.034
Google Scholar
[17]
Z. Yahya, M.M. A Abdullah, K. Hussin, K.N. Ismail, A.V. Sandu, P. Vizureanu, P, R. Abd Razak, Chemical and Physical Characterization of Boiler Ash from Palm Oil Industry Waste for Geopolymer Composite, Revista de Chimie (Bucharest), 64, no. 12, pp.1408-1412, (2013).
DOI: 10.4028/www.scientific.net/amm.754-755.245
Google Scholar
[18]
R. Ahmad, M.M.A.B. Abdullah, K. Hussin, A.V. Sandu, M. Binhussain, N.A. Jaya. Processing and properties of polymer filled geopolymer ceramics fabricated via powder metallurgy method: A review, Rev. Adv. Mater. Sci. 44, pp.26-32, (2016).
Google Scholar
[19]
I. Ozer and SezenSoyer-Uzunn, Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceramics International, vol. 41, pp.10192-10198, (2015).
DOI: 10.1016/j.ceramint.2015.04.125
Google Scholar
[20]
M. Claverie, F. Martin, J. P. Tardy, M. Cyr, P. D. Parseval, O. Grauby, et al., Structural and chemical changes in kaolinite caused by flash calcination: Formation of spherical particles, Applied Clay Science, vol. 114, pp.247-255, (2015).
DOI: 10.1016/j.clay.2015.05.031
Google Scholar
[21]
P. He, D. Jia, and S. Wang, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor, Journal of the European Ceramic Society, vol. 33, pp.689-698, (2013).
DOI: 10.1016/j.jeurceramsoc.2012.10.019
Google Scholar
[22]
V. -G. Lee and T. -H. Yeh, Sintering effects on the development of mechanical properties of fired clay ceramics, Materials Science and Engineering A, vol. 485, pp.5-13, (2008).
DOI: 10.1016/j.msea.2007.07.068
Google Scholar
[23]
C. Y. Heah, H. Kamarudin, A. M. M. A. Bakri, M. Bnhussain, M. Luqman, I. K. Nizar, et al., Kaolin-based geopolymers with various NaOH concentrations, International Journal of Minerals, Metallurgy and Materials, vol. 20, p.313, (2013).
DOI: 10.1007/s12613-013-0729-0
Google Scholar
[24]
D. L. Y. Kong and J. G. Sanjayan, Damage behavior of geopolymer composites exposed to elevated temperatures, Cement & Concrete Composites, vol. 30, pp.986-991, (2008).
DOI: 10.1016/j.cemconcomp.2008.08.001
Google Scholar
[25]
D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures, Journal of Materials Science, vol. 43, pp.824-831, (2008).
DOI: 10.1007/s10853-007-2205-6
Google Scholar
[26]
J. G. S. Daniel L.Y. Kong, Kwesi Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cement & Concrete Research, vol. 37, pp.1583-1589, (2007).
DOI: 10.1016/j.cemconres.2007.08.021
Google Scholar
[27]
N. Xie, J. L. Bell, and W. M. Kriven, Fabrication of Structural Leucite Glass–Ceramics from Potassium-Based Geopolymer Precursors, The American Ceramic Society, vol. 93, pp.2644-2649, (2010).
DOI: 10.1111/j.1551-2916.2010.03794.x
Google Scholar
[28]
S. Markovic, V. Dondur, R. Dimitrijevi, and S. Macura, Thermally induced rings formation in aluminosilicate structures, Journal of Thermal Analysis and Calorimetry, vol. 84, pp.253-258, (2006).
DOI: 10.1007/s10973-005-7161-2
Google Scholar
[29]
H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. V. Assche, and B. V. Mele, Reaction mechanism, kinetics and high temperature transformations of geopolymers, Journal of Materials Science, vol. 42, pp.2982-2996, (2007).
DOI: 10.1007/s10853-006-0568-8
Google Scholar
[30]
B. K. Ngun, H. Mohamad, S. K. Sulaiman, M. Y. M. Sulaiman, T. Isobe, K. Okada, et al., Changes in physical, chemical, and microstructures and strength relationships of some Cambodian clays, Journal of Ceramic Processing Research, vol. 13, pp.547-555, (2012).
Google Scholar
[31]
E. Fakhfakh, W. Hajjaji, M. Medhioub, F. Rocha, A. López-Galindo, M. Setti, et al., Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks, Applied Clay Science 35, vol. 35, pp.228-237, (2007).
DOI: 10.1016/j.clay.2006.09.006
Google Scholar