Characterization and Microstructure of Kaolin-Based Ceramic Using Geopolymerization

Article Preview

Abstract:

Geopolymers can be transformed into ceramics upon sintering. This paper reports the effect of temperature on the physical, mechanical properties and characteristics of kaolin geopolymer ceramic. The nepheline ceramic was fabricated through geopolymerization. The geopolymer samples were exposed to temperature from 900 °C up to 1200 °C. Kaolin geopolymer undergo shrinkage upon temperature exposure. Unheated kaolin geopolymer appeared to be amorphous and crystalline nepheline was the major phase after sintered to high temperatures as depicted by XRD analysis. Microstructural analysis showed formation of denser structure as the temperature increased. The maximum flexural strength of 86 MPa is achieved at temperatures of 1200 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. D. Silva and K. Sagoe-Crenstil, Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems, Cement and Concrete Research, vol. 38, pp.870-876, (2008).

DOI: 10.1016/j.cemconres.2007.10.003

Google Scholar

[2] P. Duxson, A. Ferna´ndez-Jime´nez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. v. Deventer, Geopolymer technology: the current state of the art, J Mater Sci, vol. 42, pp.2917-2933, (2007).

DOI: 10.1007/s10853-006-0637-z

Google Scholar

[3] J. Davidovits, Geopolymers: Inorganic polymeric new materials, Journal of Thermal Analysis, vol. 37, pp.1633-1656, (1991).

DOI: 10.1007/bf01912193

Google Scholar

[4] J. L. Provis, C. Z. Yong, P. Duxson, and J. S. J. v. Deventer, Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 336, pp.57-63, (2009).

DOI: 10.1016/j.colsurfa.2008.11.019

Google Scholar

[5] D. Panias, I. P. Giannopoulou, and T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 301, pp.246-254, (2007).

DOI: 10.1016/j.colsurfa.2006.12.064

Google Scholar

[6] P. N. Lemougna, K. J. D. MacKenzie, and U. F. C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash, Ceramics International, vol. 37, pp.3011-3018, (2011).

DOI: 10.1016/j.ceramint.2011.05.002

Google Scholar

[7] H. K. Tchakoute, A. Elimbi, E. Yanne, and C. N. Djangang, Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature, Cement & Concrete Composites, vol. 38, pp.75-81, (2013).

DOI: 10.1016/j.cemconcomp.2013.03.010

Google Scholar

[8] W. Hajjaji, S. Andrejkovicˇová, C. Zanelli, M. Alshaaer, M. Dondi, J. A. Labrincha, et al., Composition and technological properties of geopolymers based on metakaolin and red mud, Materials and Design, vol. 52, pp.648-654, (2013).

DOI: 10.1016/j.matdes.2013.05.058

Google Scholar

[9] H. Xu and J. S. J. V. Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, vol. 59, pp.247-266, (2000).

DOI: 10.1016/s0301-7516(99)00074-5

Google Scholar

[10] K. Sagoe-Crentsil and L. Weng, Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems, Advances in Geopolymer Science and Technology, vol. 42, pp.3007-3014, (2007).

DOI: 10.1007/s10853-006-0818-9

Google Scholar

[11] D. Hardjito and B. V. Rangan, Fly Ash-Based Geopolymer Concrete, Australian Journal of Structural Engineering, vol. 6, pp.1-9, (2005).

DOI: 10.1080/13287982.2005.11464946

Google Scholar

[12] C. Kuenzel, L. M. Grover, L. Vandeperre, A. R. Boccaccini, and C. R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars, Journal of the European Ceramic Society, vol. 33, pp.251-258, (2013).

DOI: 10.1016/j.jeurceramsoc.2012.08.022

Google Scholar

[13] C. Ferone, G. Roviello, F. Colangelo, R. Cioffi, and O. Tarallo, Novel hybrid organic-geopolymer materials, Applied Clay Science, vol. 73, pp.42-60, (2013).

DOI: 10.1016/j.clay.2012.11.001

Google Scholar

[14] J. L. Bell, P. E. Driemeyer, and W. M. Kriven, Formation of Ceramics from Metakaolin-Based Geopolymers: Part I—Cs-Based Geopolymer, J. Am. Ceram. Soc, vol. 92, pp.1-8, (2009).

DOI: 10.1111/j.1551-2916.2008.02790.x

Google Scholar

[15] L. C. D. Jonghe and M. N. Rahaman, Sintering of Ceramics, in Handbook of Advanced Ceramics, ed. United States of America: Elsevier Inc., (2013).

Google Scholar

[16] V. Zivica, M. T. Palou, and T. I. L. Bágel, High strength metahalloysite based geopolymer, Composites: Part B, vol. 57, pp.155-165, (2014).

DOI: 10.1016/j.compositesb.2013.09.034

Google Scholar

[17] Z. Yahya, M.M. A Abdullah, K. Hussin, K.N. Ismail, A.V. Sandu, P. Vizureanu, P, R. Abd Razak, Chemical and Physical Characterization of Boiler Ash from Palm Oil Industry Waste for Geopolymer Composite, Revista de Chimie (Bucharest), 64, no. 12, pp.1408-1412, (2013).

DOI: 10.4028/www.scientific.net/amm.754-755.245

Google Scholar

[18] R. Ahmad, M.M.A.B. Abdullah, K. Hussin, A.V. Sandu, M. Binhussain, N.A. Jaya. Processing and properties of polymer filled geopolymer ceramics fabricated via powder metallurgy method: A review, Rev. Adv. Mater. Sci. 44, pp.26-32, (2016).

Google Scholar

[19] I. Ozer and SezenSoyer-Uzunn, Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceramics International, vol. 41, pp.10192-10198, (2015).

DOI: 10.1016/j.ceramint.2015.04.125

Google Scholar

[20] M. Claverie, F. Martin, J. P. Tardy, M. Cyr, P. D. Parseval, O. Grauby, et al., Structural and chemical changes in kaolinite caused by flash calcination: Formation of spherical particles, Applied Clay Science, vol. 114, pp.247-255, (2015).

DOI: 10.1016/j.clay.2015.05.031

Google Scholar

[21] P. He, D. Jia, and S. Wang, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor, Journal of the European Ceramic Society, vol. 33, pp.689-698, (2013).

DOI: 10.1016/j.jeurceramsoc.2012.10.019

Google Scholar

[22] V. -G. Lee and T. -H. Yeh, Sintering effects on the development of mechanical properties of fired clay ceramics, Materials Science and Engineering A, vol. 485, pp.5-13, (2008).

DOI: 10.1016/j.msea.2007.07.068

Google Scholar

[23] C. Y. Heah, H. Kamarudin, A. M. M. A. Bakri, M. Bnhussain, M. Luqman, I. K. Nizar, et al., Kaolin-based geopolymers with various NaOH concentrations, International Journal of Minerals, Metallurgy and Materials, vol. 20, p.313, (2013).

DOI: 10.1007/s12613-013-0729-0

Google Scholar

[24] D. L. Y. Kong and J. G. Sanjayan, Damage behavior of geopolymer composites exposed to elevated temperatures, Cement & Concrete Composites, vol. 30, pp.986-991, (2008).

DOI: 10.1016/j.cemconcomp.2008.08.001

Google Scholar

[25] D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures, Journal of Materials Science, vol. 43, pp.824-831, (2008).

DOI: 10.1007/s10853-007-2205-6

Google Scholar

[26] J. G. S. Daniel L.Y. Kong, Kwesi Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cement & Concrete Research, vol. 37, pp.1583-1589, (2007).

DOI: 10.1016/j.cemconres.2007.08.021

Google Scholar

[27] N. Xie, J. L. Bell, and W. M. Kriven, Fabrication of Structural Leucite Glass–Ceramics from Potassium-Based Geopolymer Precursors, The American Ceramic Society, vol. 93, pp.2644-2649, (2010).

DOI: 10.1111/j.1551-2916.2010.03794.x

Google Scholar

[28] S. Markovic, V. Dondur, R. Dimitrijevi, and S. Macura, Thermally induced rings formation in aluminosilicate structures, Journal of Thermal Analysis and Calorimetry, vol. 84, pp.253-258, (2006).

DOI: 10.1007/s10973-005-7161-2

Google Scholar

[29] H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. V. Assche, and B. V. Mele, Reaction mechanism, kinetics and high temperature transformations of geopolymers, Journal of Materials Science, vol. 42, pp.2982-2996, (2007).

DOI: 10.1007/s10853-006-0568-8

Google Scholar

[30] B. K. Ngun, H. Mohamad, S. K. Sulaiman, M. Y. M. Sulaiman, T. Isobe, K. Okada, et al., Changes in physical, chemical, and microstructures and strength relationships of some Cambodian clays, Journal of Ceramic Processing Research, vol. 13, pp.547-555, (2012).

Google Scholar

[31] E. Fakhfakh, W. Hajjaji, M. Medhioub, F. Rocha, A. López-Galindo, M. Setti, et al., Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks, Applied Clay Science 35, vol. 35, pp.228-237, (2007).

DOI: 10.1016/j.clay.2006.09.006

Google Scholar