[1]
Z. W. Wei, L. N. Sun, J. L. Liu, J. Z. Zhang, H. R. Yang, Y. Yang, et al., Cysteine modified rare-earth up-converting nanoparticles for invitro and invivo bioimaging, J. Biomaterials. 35 (2014) 387-392.
DOI: 10.1016/j.biomaterials.2013.09.110
Google Scholar
[2]
P. Ramasamy, J. Kim, Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells, J. Chem Commun. 50 (2014) 879-881.
DOI: 10.1039/c3cc47290f
Google Scholar
[3]
S. Zhang, J. Wang, W. Xu, B. Chen, W. Yu, L. Xu, et al., Fluorescence resonance energy transfer between NaYF4: Yb, Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin, J. J Lumin. 147 (2014).
DOI: 10.1016/j.jlumin.2013.11.052
Google Scholar
[4]
X. Cui, H. M. Zhang, An off–on, fluorescence probe for Hg(II) detection using upconversion nanobars as the excitation source: Preparation, characterization and sensing performance, J. J Lumin. 145 (2014) 364-370.
DOI: 10.1016/j.jlumin.2013.07.021
Google Scholar
[5]
M. Y. Ding, C. H. Lu, L. H. Cao, Y. R. Ni, Z. Z. Xu, Tripod-like β-NaYF4: Ln3+ (Ln= Yb, Er, Tm, Ho) nanocrystals with multicolor upconversion luminescence, J. Advanced Materials Research. 853 (2014) 243-248.
DOI: 10.4028/www.scientific.net/amr.853.243
Google Scholar
[6]
N. Niu, F. He, S. L. Gai, C. X. Li, X. Zhang, S. H. Huang, et al., Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4: Yb3+, Ln3+, Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and its enhanced UC luminescence, J. J Mater Chem. 22 (2012).
DOI: 10.1039/c2jm34653b
Google Scholar
[7]
C. Liu, L. X. Zhang, Q. F. Zheng, F. X. Luo, Y. Z. Xu, W. G. Weng, Advances in the surface engineering of upconversion nanocrystals, J. Science of Advanced Materials. 4 (2012) 1-22.
Google Scholar
[8]
D. Chen, Y. S. Wang, Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials, J. Nanoscale. 5 (2013) 4621-4637.
DOI: 10.1039/c3nr00368j
Google Scholar
[9]
Z. Q. Liang, Y. Cui, S. L. Zhao, L. J. Tian, J. J. Zhang, Z. Xu, The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb3+, Er3+ nanoparticles by codoping with K+ ions, J. J Alloy Compd. 610 (2014) 432-437.
DOI: 10.1016/j.jallcom.2014.04.183
Google Scholar
[10]
L. Lei, D. Q. Chen, P. Huang, J. Xu, R. Zhang, Y. S. Wang, Modifying the size and uniformity of upconversion Yb/Er: NaGdF4 nanocrystals through alkaline-earth doping, J. Nanoscale. 5 (2013) 11298-11305.
DOI: 10.1039/c3nr03497f
Google Scholar
[11]
C. Z. Zhao, X. G. Kong, X. M. Liu, L. P. Tu, F. Wu, Y. L. Zhang, et al., Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4: Yb3+, Tm3+ nanoparticles, J. Nanoscale. 5 (2013) 8084-8089.
DOI: 10.1039/c3nr01916k
Google Scholar
[12]
Z. Q. Liang, S. L. Zhao, Y. Cui, L. J. Tian, J. J. Zhang, Z. Xu, Phase transformation and morphology tuning of β-NaYF4: Yb3+, Er3+ nanocrystals through K+ ions codoping, J. Chinese Physics B. 24 (2015) 037801.
DOI: 10.1088/1674-1056/24/3/037801
Google Scholar
[13]
M. Rai, S. K. Singh, A. K. Singh, R. Prasad, B. Koch, K. Mishra, et al., Enhanced red upconversion emission, magnetoluminescent behavior, and bioimaging application of NaSc0. 75Er0. 02Yb0. 18Gd0. 05F4@ AuNPs nanoparticles, J. ACS Applied Materials & Interfaces. 7 (2015).
DOI: 10.1021/acsami.5b03218
Google Scholar
[14]
Y. Song, G. Liu, J. X. Wang, X. T. Dong, W. S. Yu, Synthesis and luminescence resonance energy transfer based on noble metal nanoparticles and the NaYF4: Tb3+ shell, J. Phys Chem Chem Phys. 16 (2014) 15139-15145.
DOI: 10.1039/c4cp02260b
Google Scholar