One-Pot, Low-Temperature Preparation of Pyrochlore-Like Na2Ta2O6 Nanocrystals by Solvothermal Synthesis

Article Preview

Abstract:

In this paper, pyrochlore-like Na2Ta2O6 nanocrystals have been successfully synthesized in mixed solvents (water-ethanol) by a single-step and low-temperature solvothermal method. During the synthesis process, tantalum chloride and sodium hydroxide are used as starting materials; diethanolamine is acted as a stabilizer. The influence of alkaline concentration, reaction temperature and time on the crystallinity and morphology of Na2Ta2O6 nanocrystals is investigated in detail. The samples are characterized by X-ray diffraction and transmission electron microscope. The results show that the pure-phase pyrochlore-like Na2Ta2O6 nanocrystals can be formed with 10.5 mmol sodium hydroxide at 353K for 12 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-272

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.

DOI: 10.1038/414625a

Google Scholar

[2] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347 (2015) 970-974.

DOI: 10.1126/science.aaa3145

Google Scholar

[3] M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays, Nat. Commun. 6 (2015) 6797.

DOI: 10.1038/ncomms7797

Google Scholar

[4] L. Li, X. Mu, W. Liu, Z. Mi, C.J. Li, Simple and efficient system for combined solar energy harvesting and reversible hydrogen storage, J. Am. Chem. Soc. 137 (2015) 7576 -7579.

DOI: 10.1021/jacs.5b03505

Google Scholar

[5] L. Andros, M. Juric, J. Popovic, A. Santic, P. Lazic, M. Bencina, M. Valant, N. Brnicevic, P. Planinic, Ba4Ta2O9 oxide prepared from an oxalate-based molecular precursor characterization and properties, Inorg. Chem. 52 (2013) 14299-14308.

DOI: 10.1021/ic402276e

Google Scholar

[6] T. Ishihara, N.S. Baik, N. Ono, H. Nishiguchi, Y. Takita, Effects of crystal structure on photolysis of H2O on K–Ta mixed oxide, J. Photochem. Photobiol., A167 (2004) 149-157.

DOI: 10.1016/j.jphotochem.2004.03.030

Google Scholar

[7] T. Grewe, K. Meier, H. Tüysüz, Photocatalytic hydrogen production over various sodium tantalates, Catal. Today 225 (2014) 142-148.

DOI: 10.1016/j.cattod.2013.10.092

Google Scholar

[8] C.C. Hu, T.F. Yeha, H. Teng, Pyrochlore-like K2Ta2O6 synthesized from different methods as efficient photocatalysts for water splitting, Catal. Sci. Technol. 3 (2013) 1798-1804.

DOI: 10.1039/c3cy00008g

Google Scholar

[9] R.R. Jitta, R. Gundeboina, N.K. Veldurthi, R. Guje, V. Muga, Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications-a review, J. Chem. Technol. Biotechnol. 90 2015 1937-(1948).

DOI: 10.1002/jctb.4745

Google Scholar

[10] X. Li, J. Zang, Facile hydrothermal synthesis of sodium tantalate (NaTaO3) nanocubes and high photocatalytic properties, J. Phys. Chem. C113 (2009) 19411-19418.

DOI: 10.1021/jp907334z

Google Scholar

[11] J. Liu, J. Liu, Z. Li, Preparation and photocatalytic activity for water splitting of Pt–Na2Ta2O6 nanotube arrays, J. Solid State Chem. 198 (2013) 192-196.

DOI: 10.1016/j.jssc.2012.10.005

Google Scholar

[12] Y. Lee, T. Watanabe, T. Takata, J.N. Kondo, M. Hara, M. Yoshimura, K. Domen, Preparation and characterization of sodium tantalate thin films by hydrothermal-electrochemical synthesis, Chem. Mater. 17 (2005) 2422-2426.

DOI: 10.1021/cm0500859

Google Scholar

[13] S. Ikeda, M. Fubuki, Y.K. Takahara, M. Matsumura, Photocatalytic activity of hydrothermally synthesized tantalite pyrochlores for overall water splitting, Appl. Catal. A 300 (2006) 186-190.

DOI: 10.1016/j.apcata.2005.11.007

Google Scholar

[14] H. Tuysuz, C.K. Chan, Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting, Nano Energy 2 (2013) 116-123.

DOI: 10.1016/j.nanoen.2012.08.003

Google Scholar

[15] J.V. Rojas, C.H. Castano, Radiation-assisted synthesis of iridium and rhodium nanoparticles supported on polyvinylpyrrolidone, J. Radioanal Nucl. Chem. 302 (2014) 555-561.

DOI: 10.1007/s10967-014-3291-y

Google Scholar

[16] K. Kukli, M. Ritala, M. Leskela, Atomic layer deposition and chemical vapor deposition of tantalum oxide by successive and simultaneous pulsing of tantalum ethoxide and tantalum thloride, Chem. Mater. 12 (2000) 1914-(1920).

DOI: 10.1021/cm001017j

Google Scholar

[17] K. Kukli, J. Aarik, A. Aidla, H. Siimon, M. Ritala, M. Leskela, In situ study of atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O, Appl. Surf. Sci. 112 (1997) 236-242.

DOI: 10.1016/s0169-4332(96)00989-0

Google Scholar

[18] J. Aarik, K. Kukli, A. Aidla, L. Pung, Mechanisms of suboxide growth and etching in atomic layer deposition of tantalum oxide from TaCl5 and H2O, Appl. Surf. Sci. 103 (1996) 331-341.

DOI: 10.1016/s0169-4332(96)00554-5

Google Scholar