Characteristics and Biodegradation Properties of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Functionalized Graphene (PHBV/FGO) Blends

Article Preview

Abstract:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/functionalized graphene blends were prepared by solution blend method. The structure, thermal properties, thermal degradation and crystalline morphology were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG), and polarizing optical microscopy (POM) analyses. Experimental results indicated that FGO increase the intensity of diffraction peak. Small-sized PHBV spherulites were formed. FGO affects the crystallization behavior of PHBV as heterogeneous nucleation agent. FGO acts as an effective thermal barrier due to its large aspect ratio and thereby hinders the degradtion of PHBV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-294

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Buzarovska, G. Bogoeva-Gaceva, A. Grozdanov, M. Avella, G. Gentile, M. Errico, Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites, J. Mater. Sci. 42(2007)6501-6509.

DOI: 10.1007/s10853-007-1527-8

Google Scholar

[2] R. Crétois, N. Follain, E. Dargent, J. Soulestin, S. Bourbigot, S. Marais, L. Lebrun, Microstructure and barrier properties of PHBV/organoclays bionanocomposites, J. Membrane Sci. 467 (2014) 56-66.

DOI: 10.1016/j.memsci.2014.05.015

Google Scholar

[3] R. Bakare, S. Hawthrone, C. Vails, A. Gugssa, A. Karim, J. Stubbs, D. Raghavan, Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles(Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) film, J. Colloid Interf. Sci. 465(2016).

DOI: 10.1016/j.jcis.2015.11.041

Google Scholar

[4] J.J. Bai, J.M. Dai, G. Li, Electrospun composites of PHBV/pearl powder for bone repairing, Progress in natural science: materials international, 25(2015)327-333.

DOI: 10.1016/j.pnsc.2015.07.004

Google Scholar

[5] Z.C. Xing, W.P. Chae, J.Y. Baek, M.J. Choi, Y.S. Jung, I.K. Kang, In vitro assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering, Biomacromolecules. 11(2010)1248-1253.

DOI: 10.1021/bm1000372

Google Scholar

[6] W.E. Mahmoud, Morphology and physical properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by two different techniques, Eur. Polym. J. 47(2011)1534-1540.

DOI: 10.1016/j.eurpolymj.2011.05.011

Google Scholar

[7] R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi, Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric polymorph, Polymer. 51(2010)5846-5856.

DOI: 10.1016/j.polymer.2010.09.067

Google Scholar

[8] G. Gedler, M. Antunes, V. Realinho, J.I. Velasco, Thermal stability of polycarbonate-graphene nanocomposite foams, Polym. Degrad. Stabil. 97(2012)1297-1304.

DOI: 10.1016/j.polymdegradstab.2012.05.027

Google Scholar

[9] A.S. Patole, S.P. Patole, S.Y. Jung, J.B. Yoo, J.H. An, T.H. Kim, Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization, Eur. Polym. J. 48(2012)252-259.

DOI: 10.1016/j.eurpolymj.2011.11.005

Google Scholar