Photocatalytic Oxidative Decolorization of Methyl Orange with Iron Phthalocyanine/Calcium Alginate Gel Beads

Article Preview

Abstract:

A photocatalyst iron phthalocyanine/calcium alginate gel bead (FePc@SA) was prepared through the mixture including iron tetra (N-carbonylacrylic) aminophthalocyanine (FePc) and sodium alginate dropped into 5 % (w/v) CaCl2 solution to get gel beads. The color of gel ball was black and the average diameters of gel ball before and after drying were 3.19 mm and 1.20 mm, respectively. Methyl orange was selected as a substrate to investigate the photocatalytic activity of FePc@SA. The results shown that the remaining rate of methyl orange was 19.51 % under the condition of methyl orange 10 mg/L 25 mL, pH value was 3, the dosage of H2O2 was 50 μL, FePc@SA was 0.2 g and visible light irradiation for 3 h. The results indicated that FePc@SA/H2O2 system had an obvious synergistic effect on photocatalytic oxidative decolorization of methyl orange. The decolorization process conformed to the first order kinetics equation, and the half-life of FePc@SA was 76.7 min. Simple preparation methods and excellent photocatalytic properties made FePc@SA became an ideal high performance photocatalytic material, which was applied to deal with wastewater containing organic pollutants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-305

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. T. Oh, W. R. Kim, S. H. Kim, Y. C. Chuang, J. S. Park, The preparation of polyurethane foam combined with ph-sensitive alginate/bentonite hydrogel for wound dressings, Fibers Polym. 12 (2011) 159-165.

DOI: 10.1007/s12221-011-0159-4

Google Scholar

[2] S. Fu, A. Thacker, D. M. Sperger, R. L. Boni, I. S. Buckner, S. Velankar, E. J. Munson, L. H. Block, Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties, AAPS Pharm. Sci. Tech. 12 (2011) 453-460.

DOI: 10.1208/s12249-011-9587-0

Google Scholar

[3] P. K. Gupta, A. K. Jaiswal, S. Asthana, A. Verma, V. Kumar, P. Shukla, P. Dwivedi, A. Dube, P. R. Mishra, Self assembled ionically sodium alginate cross-linked amphotericin b encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis, Pharm. Res. 32 (2015).

DOI: 10.1007/s11095-014-1571-4

Google Scholar

[4] T. Chae, H. Yang, V. Leung, F. Ko, T. Troczynski, Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration, J. Mater. Sci. Mater. Med. 24 (2013) 1885-1894.

DOI: 10.1007/s10856-013-4957-7

Google Scholar

[5] B. Kusuktham, J. Prasertgul, P. Srinun, Morphology and property of calcium silicate encapsulated with alginate beads, Silicon. 6 (2014) 191-197.

DOI: 10.1007/s12633-013-9173-z

Google Scholar

[6] H. Lin, C. Yeh, Alginate-crosslinked chitosan scaffolds as pentoxifylline delivery carriers, J. Mater. Sci. Mater. Med. 21 (2010) 1611-1620.

DOI: 10.1007/s10856-010-4028-2

Google Scholar

[7] M. H. Kafshgari, M. Mansouri, M. Khorram, S. R. Kashani, Kinetic modeling: a predictive tool for the adsorption of zinc ions onto calcium alginate beads, Int. J. Ind. Chem. 4 (2013) 5-12.

DOI: 10.1186/2228-5547-4-5

Google Scholar

[8] D. Wang, F. Zhang, J. Tang, Sodium alginate decorated carbon nanotubes-graphene composite aerogel for heavy metal ions detection, Electrochem. 83 (2015) 84-90.

DOI: 10.5796/electrochemistry.83.84

Google Scholar

[9] S. Y. Weng, S. H. Liu, L. C. Tsai, T. F Hsieh, C. M. Ma, C. M. Shu, Thermokinetics simulation for multi-walled carbon nanotubes with sodium alginate by advanced kinetics and technology solutions, J. Therm. Anal. Calorim. 113 (2013) 1603-1610.

DOI: 10.1007/s10973-013-3092-5

Google Scholar

[10] S. F. Mohamed, F. Agili, M. M. Asker, K. E. Shebawy, Characterization of the biosorption of lead with calcium alginate xerogels and immobilized turbinaria decurrens, Monatsh. Chem. 142 (2011) 225-232.

DOI: 10.1007/s00706-011-0452-3

Google Scholar

[11] L. Fuks, A. Oszczak, E. Gniazdowska, D. Sternik, Calcium alginate and chitosan as potential sorbents for strontium radionuclide, J. Radioanal. Nucl. Chem. 304 (2015) 15-20.

DOI: 10.1007/s10967-014-3698-5

Google Scholar

[12] D. Lu, Y. Zhang, S. Niu, L. Wang, S. Lin, C. Wang, W. Ye, C. Yan, Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method, Biodegradation. 23 (2012).

DOI: 10.1007/s10532-011-9500-2

Google Scholar

[13] L. Jin, Z. L. Ding, D. J. Chen. Zinc octacarboxylic phthalocyanine/lutein dyads co-adsorbed nanocrystalline TiO2 electrode: enhancement in photovoltaic performance of dye-sensitized solar cells, J. Mater. Sci. 48 (2013) 4883-4891.

DOI: 10.1007/s10853-013-7268-y

Google Scholar

[14] W. Lu, W. Chen, L. Nan, M. H. Xu, Y. Y. Yao, Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine, Appl. Catal. B-Environ. 87 (2009) 146-151.

DOI: 10.1016/j.apcatb.2008.08.024

Google Scholar

[15] R. Chen, Z. Chen, X. Zheng, X. Chen, S. Wu, Preparation and Characterization of mSA/mCS Bipolar Membrances Modified by CuTsPc and CuTAPc, J. Membrane. Sci. 355 (2010) 1-6.

DOI: 10.1016/j.memsci.2010.01.013

Google Scholar

[16] R. Chen, Z. Huang, X. Zheng, C. Zhen, Paired Electro-generation of Glyoxylic Acid Using Bipolar Membrane Made from Sodium Alginate and Chitosan, Chem. Eng. Commun. 197 (2010) 1476-1484.

DOI: 10.1080/00986445.2010.484993

Google Scholar

[17] M. Xu, H. Chen, G. Pan, P. Tang. Preparation of zinc phthalocyanine-calcium alginate gel beads and its use for photocatalytic oxidation decolorization of methyl orange, Mater. Sci. Forum. 809-810 (2015) 252-257.

DOI: 10.4028/www.scientific.net/msf.809-810.252

Google Scholar

[18] S. Seelan, M. S. Agashe, D. Srinivas, S. Sivasanker, Effect of peripheral substitution on spectral and catalytic properties of copper phthalocyanine complexes, J. Mol. Catal. A-Chem. 168 (2001) 61-68.

DOI: 10.1016/s1381-1169(00)00534-3

Google Scholar